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Resumen 
El glioblastoma (GB) es el tumor cerebral maligno más común y agresivo en humanos y presenta 
un pronóstico desfavorable. Los tratamientos existentes han tenido un éxito limitado en la 
prolongación de la supervivencia. La heterogeneidad tumoral y la caracterización precisa del GB 
siguen siendo un desafío, y actualmente no se dispone de biomarcadores efectivos y específicos 
de la enfermedad. Por lo tanto, la identificación y comprensión de moléculas clave responsables 
del fenotipo maligno del GB permitirán generar nuevos blancos terapéuticos potenciales. 
 
El objetivo de este estudio es identificar genes diferencialmente expresados entre pacientes y 
controles, con el fin de reconocer firmas genéticas que permitan diferenciar los tipos de GB. 
Reanalizamos cinco conjuntos de datos transcriptómicos de GB disponibles públicamente, 
comparando controles y pacientes para la detección de genes diferencialmente expresados (DEG). 
Además, realizamos análisis de enriquecimiento y supervivencia, y confrontamos los resultados 
con la literatura científica para proponer biomarcadores diagnósticos y pronósticos potenciales. 
 
Identificamos tres grupos de DEG que afectan diversas características que favorecen el desarrollo 
tumoral, así como cuatro DEG que no habían sido previamente reportados en GB. Los genes 
identificados representan nuevos biomarcadores potenciales para el diagnóstico o la mejora de 
tratamientos, y también permiten obtener nuevos conocimientos sobre los mecanismos 
moleculares implicados y una mejor comprensión de los subtipos de GB. 
 
Los DEG clave son posibles blancos para el diagnóstico, la subtipificación, el pronóstico y el 
tratamiento, con el objetivo de mejorar la terapia y la supervivencia en GB. Los hallazgos 
principales indican que PDPN está asociado con la linfangiogénesis y la metástasis, lo que lo 
convierte en un marcador atractivo para la clasificación del GB, mientras que la glicosilación 
alterada sugiere un papel en la progresión del cáncer, haciendo de NEBL un buen biomarcador 
potencial de progresión. 
 
 
Palabras Claves: Astrocitoma, Clasificación, Biología Computacional, Diagnóstico, Transcriptoma. 

 
 
Abstract 
Glioblastoma (GB) is the most common and aggressive malignant brain tumor in humans and has a 
bad prognosis. Existing treatments have had limited success in prolonging survival. Tumor 
heterogeneity and accurate characterization of GB remain challenging, and effective disease-
specific biomarkers are currently unavailable. Therefore, identifying and understanding of key 
molecules responsible for the malignant phenotype of GB will allow the generation of new potential 
therapeutic targets.  
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The aim of this study is to identify differentially expressed genes between patients and controls to 
recognize genetic signatures that will allow differentiation of GB types. We re-analyzed five publicly 
available GB transcriptomic datasets, comparing controls and patients for the detection of 
differentially expressed genes (DEG). Additionally, we performed enrichment and survival analysis, 
and confronted the results with scientific literature to propose potential diagnostic and prognostic 
biomarkers.  
 
We identified three groups of DEGs that affect several characteristics that favor tumor development 
and four DEGs that had not been reported earlier for GB. The identified genes are potential new 
biomarkers for diagnosis or to improve treatments, and they also allow gaining new insights into 
understanding molecular mechanisms and a better understanding of GB subtypes.  
 
Key DEGs are potential targets for diagnosis, subtyping, prognosis, and therapy to improve GB 
treatment and survival. Main findings are that PDPN is associated with lymphangiogenesis and 
metastasis, making it an attractive marker for GB classification as well as the altered glycosylation 
indicating a role in cancer progression making of NEBL a good potential progression biomarker. 
 
 
Key Words: Astrocytoma, Classification, Computational Biology, Diagnosis, Transcriptome. 

 

 
Introduction  
Glioblastoma (GB) is the most common and 
lethal variant of glioma. Mean survival is only 
14-15 months with 10 % survival probability of 
5 years (Gallego, 2015). Improving the survival 
time of GB patients remains a challenging 
management problem. Patients with GB have a 
dramatically poor prognosis due to its cellular 
and molecular heterogeneity. For that reason, it 
is essential to find molecular targets that can 
serve as biomarkers and possible druggable 
targets, that should lead to a new classification 
system for patient stratification, prognosis 
prediction and selection of appropriate 
therapies that could provide therapeutic 
opportunities for this deadly neoplasm. This 
tumor is also flexible and adaptative to different 
adverse conditions, such as nutrient 
deprivation and other multiple interactions 
between the tumor microenvironment and 
immune cells that may drive and maintain its 
development. The identification of potential 
biomarkers in such a complex disease requires 
the integration of several data sources and a 
data analysis pipeline ensuring correct pre-
processing, filtering and selection of core 
genes that could serve the above purpose. 
 
Considering the glioblastoma characteristics, 
we searched for gene expression data of 
glioblastoma patients and healthy controls, with 
the aim to identify a gene signature or some 
biomarkers that are potentially good candidates 
for diagnosis, subtyping, improving treatment 

and, also to gain new insights to understand 
the underlying molecular mechanisms in 
GB. To achieve this goal, we identified 
differentially expressed genes in five 
publicly available GB datasets comparing 
controls and patients. This identification 
helped us to propose a gene signature for 
the differentiation of GB types. Further, we 
conducted an enrichment analysis of the 
differentially expressed genes (DEGs) lists. 
This allowed the confirmation of previously 
known processes in GB and, also, the 
identification of new crucial genes that had 
not previously been reported in GB. We 
selected the principal potential biomarkers 
through a thorough literature review and 
survival analysis to propose them for 
diagnosis or as future drug targets. 
 
Our main finding is that the key DEGs can 
be classified into three groups: Genes that 
code for proteins of the collagen family 
(COL1A1, COL4A2, COL6A1), genes that 
code for transcription factors (HOXA10, 
HOXD10, HOXA5) and genes that code for 
proteins related to angiogenesis and/or 
cellular remodeling and a higher invasive 
potential (PDPN, VEGFA, CHI3L1). 
Moreover, we found four DEGs that have 
not been reported earlier as related to GB 
and could have a high potential of being 
valuable biomarkers and be possible 
druggable objectives. They have been 
reported to be implicated in carcinogenesis  

https://paperpile.com/c/243953/ODsaT
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or progression in other cancers but not directly 
related to GB (HS3ST4, GCNT4, NEBL, 
ST6GALNAC1). 
 

Materials and methods 
We selected five data sets from the NCBI GEO 
database that compare GB vs. regular brain 
tissue expression. Each data set was pre-
processed and analyzed separately. Pre-
processing and quality control were conducted: 
selecting random samples from each condition 
(GB/normal) to balance samples, gene filtering, 
and normalization to prevent mean-variance 
dependence. The results of these steps were 
confirmed using descriptive statistics. 

 
Transcriptomic analysis.  
Further, we identified DEGs using 
Bioconductor specialized packages (Carlson,  

 
2017) version 3.16 in R version 4.2.1 and 
conducted an enrichment analysis for 
common DEGs in DAVID tool . The 
direction of differential expression was 
reported by fold-change outputs. Main 
DEGs were used for survival analysis. 
 
The Genome Expression Omnibus 
database of NCBI 
(https://www.ncbi.nlm.nih.gov/gds) was 
searched for gene expression data of 
glioblastoma patients and healthy controls 
(without previous therapy). The datasets 
listed in Table 1 met the criteria. Most of 
these datasets had chip-seq, non-coding 
RNA or even methylation data that were not 
used. All datasets were accessed in the 
second semester of 2021. 
 

 
Table 1. Data sets from NCBI with accession numbers, description of content and samples used in our 
investigation after random selection. 

GEO accession 
number 

Description Samples used (before - after 
random selection)a 

GSE119834 (D. 
W. Huang et al., 
2009; Mack et al., 
2019; Sherman 
et al., 2022) 

RNAseq from GB samples, glioblastoma stem 
cells (GSC) and neural stem cells (NSC). 
Fragments Per Kilobase Million (FPKM) 
transformation. 

Before: 45 GB; 44 GSC; 9 NSC.  
19471 genes. 
After: 9 GB; 9 NSC. 19048 genes. 

GSE145645 (Xu 
et al., 2021) 

RNAseq from GB biopsies, normal brain tissues 
(NB), and cell line counterparts. FPKM-lg2 
transformation. 

Before: 32 GB; 3 NB. 19774 genes. 
After: 4 GB; 3 NB. 17963 genes. 

GSE147352 (T. 
Huang et al., 
2021) 

RNAseq from GB biopsies, lower grade gliomas 
(LGG) and NB. 

Before: 85 GB; 18 LGG; 15 NB. 
35149 genes. 
After: 17 GB; 15 NB. 32661 genes. 

GSE151352 RNAseq of normal/tumor tissue pairs of GB 
patients (same patient). rlog-normalized count 
data. 

Before: 12 GB; 12 NB. 33245 
genes. 
After: 12 GB; 12 NB. 20565 genes. 

GSE159851 
(Schaffenrath et 
al., 2021) 

RNAseq from endothelial cells isolated from 
primary and secondary brain tumors. GB, 
Adenocarcinoma brain metastasis (BM) and NB. 

Before: 5 GB; 6 NB; 6 BM. 20336 
genes. 
After: 5 GB; 6 NB. 19174 genes. 

aFiltered by quality analysis based on descriptive statistics analysis. 
 

Ethical Considerations 
This study is based solely on the re-analysis of 
publicly available transcriptomic data, which 
were generated under the ethical guidelines 
and approvals of the original studies. Since the 
data used are anonymized and publicly 
available, this research falls under the category 
of secondary research, which, according to 
international and national standards, does not 
require new ethical approvals. In Colombia, 
Resolution 8430 of 1993 requires ethical 
approval for studies involving direct human 

participation or biological samples, but 
exempts studies using anonymized, publicly 
available data. Law 1751 of 2015 
emphasizes the protection of dignity and 
privacy, while Decree 1374 of 2013 
regulates the use of data in scientific 
research, ensuring that anonymized public 
data usage does not infringe on patient’s 
rights. International guidelines, such as the 
Declaration of Helsinki, also confirm that 
secondary research using anonymized data  
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usually does not require further ethical review. 
 
Summarization 
When needed, summarization was performed 
to a specific reference human genome for each 
data set to ensure analysis of genes using 
gene symbols as an identifier. For GSE147352, 
GSE151352, and GSE159851, we used 
Genome comprehensive annotation for the 
Human package available in Bioconductor. 
 
Data preprocessing 
Data quality used descriptive statistics 
(boxplots, correlations, density plots, and 
Euclidean distance dendrogram) to identify 
atypical or non-comparable samples. Filters for 
non- informative row data were conducted: 
zero expression, non-variability between 
samples (zero variation coefficient). Some 
datasets needed a resampling because of an 
excessive difference between the number of 
cases (GB) and controls (NB) or because of a 
high sample number to balance conditions and 
controls. Finally, to correct mean-variance 
dependence Variance Stabilizing Normalization 
(VSN) (Huber et al., 2002) was applied for data 
without previous normalization.  
 
Significance Analysis of Microarrays (SAM) 
(Schwender, 2017) was the method used for 
identifying DEGs in datasets for continuous 
data (microarrays, FPKM transformations, 
etc.). Differential gene expression analysis 
based on the negative binomial distribution 
(DESeq2) (Love et al., 2014) was used for 
identifying DEGs for raw count data. Both 
methods were used with a false discovery rate 
(FDR) < 0.05 (Benjamini & Hochberg, 1995) as 
control of multiplicity effects and error rate for 
many hypothesis tests. 
 
Enrichment analysis 
For common DEGs in the five data sets, 
enrichment search was conducted using 
DAVID tools (https://david.ncifcrf.gov/, 2021 
version). Based on the enrichment terms we 
grouped them into the main higher category  
 
and searched for their relationship with 
processes related to glioblastoma onset, 
development, and metastasis that could be 
potentially useful for monitoring the disease. 
Moreover, a reduced number of genes with 
coherent differential expression was chosen for 
further analysis to identify potential biomarkers. 

 
Survival analysis 
We used the GEPIA tool (Tang et al., 2017) 
for the survival analysis of the main 
common DEGs and saved the p-value of 
the hazard ratio test (Spruance et al., 2004) 
to select the best potential biomarkers. 
GEPIA was selected because it allows for 
the analysis of disease-free survival and 
overall survival. 
 
Gene expression validation using TCGA 
To validate our findings and confirm the 
results on a larger dataset, we used 
UALCAN (Chandrashekar et al., 2017), a 
comprehensive web resource for analyzing 
cancer omics data. UALCAN provides easy 
access to publicly available cancer 
transcriptome data from The Cancer 
Genome Atlas (TCGA) project. We used 
this tool to examine the expression levels of 
our candidate biomarker genes in 
glioblastoma samples from the TCGA 
database. The web resource was consulted 
in the 2022 version (Chandrashekar et al., 
2022). 
 

Results 
Differentially expressed genes and 
functional enrichment 
Statistical analysis of the five GB datasets 
allowed us the identification of thirteen 
commonly deregulated genes identified as 
critical genes related to the presence of 
tumor processes (Table 2). Their 
importance was further investigated through 
annotation and enrichment, the interaction 
of the protein products, and survival (Table 
3). 
 
Survival analysis and Gene expression 
validation using TCGA 
The main finding of this study, taking 
together all steps, is that the DEGs can be 
classified into three groups. These groups 
are related to molecular subtypes, therapy 
response, closed protein interactions 
between them, and overall patient survival. 
The genes belonging to these three groups 
have been reported earlier (Table 3). 
Kaplan-Meier analysis shows Disease-Free 
Survival (DFS) and Overall Survival (OS) 
for the five significant genes identified using 
the GEPIA tool. The analysis included 
genes where either or both survival metrics 
were statistically significant.  

https://david.ncifcrf.gov/
https://paperpile.com/c/243953/P1xK
https://paperpile.com/c/243953/YTEs
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Notably, for COL6A1, both DFS and OS were 
significant, suggesting their potential as a 
biomarker. In other cases, DFS was significant  
 

 
but not OS for PDPN and NEBL, while OS 
was significant but not DFS for VEGFA and 
HOXD10 in glioblastoma. 

 
Table 2: Log fold change values and functional classification of the thirteen key genes identified by differential expression 
analysis of five GB datasets.  

 log2 Fold Change by data seta  

DEGs 
GSE11983
4 

GSE145645 GSE147352 GSE151352 GSE159851 Functional group 

COL1A1 -1,18 3,79 7,18 0,44 3,09 Cellular differentiation factors, 
extracellular matrix related, epithelial-
mesenchymal transition. 

COL4A2 -0,52 2,00 3,82 0,30 3,43 

Cellular differentiation factors, 
angiogenesis, extracellular matrix 
related, epithelial-mesenchymal 
transition. 

COL6A1 -0,51 0,87 1,86 0,19 2,26 Cellular differentiation factors, epithelial-
mesenchymal transition. 

HOXA10 -1,84 7,20 10,21 0,79 2,99 Epithelial-mesenchymal transition. 

HOXD10 -1,44 6,99 11,92 0,83 7,69 Epithelial-mesenchymal transition. 

HOXA5 -11,00 5,65 9,85 0,82 4,89 Epithelial-mesenchymal transition. 

PDPN -11,00 1,57 3,91 0,34 1,51 Epithelial-mesenchymal transition. 

VEGFA 0,29 1,70 3,76 0,37 3,03 

Cellular differentiation factors, 
angiogenesis, extracellular matrix 
related, epithelial-mesenchymal 
transition. 

CHI3L1 -11,00 1,44 4,97 0,28 3,40 Cellular differentiation factors, epithelial-
mesenchymal transition. 

HS3ST4 -6,48 -2,22 -3,48 -1,16 -2,11 Epithelial-mesenchymal transition. 

GCNT4 -2,60 -1,45 -3,50 -3,06 -2,82 Epithelial-mesenchymal transition. 

NEBL -11,00 -0,33 -1,49 -0,53 -2,42 Extracellular matrix related. 

ST6GALNAC1 -6,86 -1,73 -1,29 -1,36 -3,33 Epithelial-mesenchymal transition. 
aShowing a qualitative expression by color. Red for down-regulated and green for up-regulated genes. For additional 
information see Supplementary Table. 

 
Moreover, we found four DEGs that have not 
been reported earlier and could have a high 
potential for being useful biomarkers and 
possible druggable objectives. These DEGS 
were HS3ST4, GCNT4, NEBL, and 
ST6GALNAC1 which have been reported to be 
implicated in carcinogenesis or progression in 
other cancers. Global references related to 
cancer are listed in Table 3. 
 

New potential biomarkers of therapeutic 
targets in GB 
NEBL 
NEBL is a protein-encoding gene belonging 
to the nebulin family. The proteins of this 
family play an essential role in cell adhesion 
and the architecture of the actin filament in 
the cell (Pappas et al., 2011). Upregulation 
of the NEBL gene has been reported in 
several high-grade and metastatic stage  
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Table 3: Thirteen key genes identified by differential expression analysis of five transcriptomic GB datasets, results of their 
survival analysis for each of them and summary of the reported implication of these genes in cancer. 

Gene 
symbol 

Disease free 
survival 

Overall  
survival 

Description 

COL1A1 p(HR)=0.24 p(HR)=0.14 COL1A1, COL4A2, and COL6A1 genes are protein‐coding genes 
that can encode the different types of collagen and belong to the 
collagen family (Chandrashekar et al., 2017). 
The COL1A1 expression level in GB is much higher than in LGG 
(Chandrashekar et al., 2022). 
The COL4A2 gene had a significantly high‐expression level in 
anaplastic astrocytoma and glioblastoma, and its expression level 
was closely related to glioma malignancy (Chandrashekar et al., 
2017, 2022; Jiang et al., 2020). 
COL6A1 is a highly expressed tumor biomarker, including GB, 
with low levels in most normal tissues (S. Sun et al., 2018). 

COL4A2 p(HR)=0.11  p(HR)=0.35 

COL6A1 p(HR)=0.03*  p(HR)=0.0058* 

HOXA10  p(HR)=0.32 p(HR)=0.17 Transcription Factor (TF) 
A high expression of HOXA10 has been observed in head and 
neck squamous cell carcinoma (HNSCC) which correlates with 
poor prognosis (Choi et al., 2018). 
HOXD10 may play different or even opposite roles at different 
stages of GB onset and development. For patients with GB, 
HOXD10 may be a valid predictor of prognosis (Feng et al., 2021; 
Y. Li et al., 2021; Turtoi et al., 2014), but it is an unfavorable 
prognostic marker in renal cancer (see proteinatlas.org). 
HOXA5 is seen to be dysregulated in several tumor types, 
including cervical cancer and breast cancer, suggesting that 
HOXA5 may be an important tumor suppressor (Hussain et al., 
2020). 

HOXD10 p(HR)=0.03* p(HR)=0.03* 

HOXA5 p(HR)=0.49 p(HR)=0.49 

PDPN (HR)=0.0086* p(HR)=0.35 Angiogenesis/remodeling 
It was observed that PDPN could be considered as a possible 
biomarker of stem cells derived from glioma, which confers 
resistance to ionizing radiation and would serve as a prognostic 
marker on patient outcomes (Sulman et al., 2008). 
CHI3L1 and PDPN are increased in GB tumors staining for 
markers associated with the mesenchymal gene expression 
pattern (Wood et al., 2016). 
VEGF and PDPN have been identified as angiogenesis and/or 
lymphangiogenesis regulators and might be essential to restrict 
tumor growth, progression, and metastasis (Belfort-Mattos et al., 
2016). 
CHI3L1 up-regulated VEGF expression in GB; they synergistically 
promote endothelial cell angiogenesis (Francescone et al., 2011; 
Shao, 2013). 
Combination therapies, including anti-CHI3L1 and other traditional 
antiangiogenic agents together with chemotherapy/radiotherapy 
could be an interesting approach to treat GB (Francescone et al., 
2011). 

VEGFA  p(HR)=0.17   p(HR)=0.17  

CHI3L1 p(HR)=0.16 p(HR)=0.16 

HS3ST4 p(HR)=0.52 p(HR)=0.52 New Posible Genes implicated in GB 
HS3ST4 is involved in post-synthetic modification of heparan 
sulfate proteoglycan (HSPG); tumors of different histotypes, 
including breast, lung, brain, pancreas, skin, and colorectal 
cancer, are characterized by profound alterations in the fine 
structure of proteoglycans leading to uncontrolled proliferation, 
immune escape, metastasis and differentiation (Knelson et al., 
2014; Zizza et al., 2019). 
GCNT4  is a prognostic marker in renal cancer (see 
proteinatlas.org); GCNT4 mediates O-Glycan biosynthesis in 
mucin-type biosynthesis (GCNT4, 2024; GCNT4 Gene - 
Glucosaminyl (N-Acetyl) Transferase 4, 2025). Alterations of O-
glycans, such as increased expression of Tn antigens, are 
commonly detected in cancer cells (Gao, 2013). Additionally, 
expression of Tn antigen has been described in human 
glioblastoma cell lines (Dusoswa et al., 2020) and the developing 

GCNT4 p(HR)=0.51  p(HR)=0.99 

NEBL p(HR)=0.049* p(HR)=0.99 

ST6GALN
AC1 

p(HR)=0.42 p(HR)=0.072  

https://www.proteinatlas.org/ENSG00000128710-HOXD10/pathology
https://www.proteinatlas.org/ENSG00000176928-GCNT4/pathology
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mouse brain but not in healthy human brain tissues (Dusoswa et 
al., 2020). 
Nebulette (NEBL) overexpression increases cell migration 
(Mamizadeh et al., 2021). It could be a favorable prognostic 
marker in renal cancer and an unfavorable one in urothelial cancer 
(see proteinatlas.org). 
High expression of NEBL may be beneficial for the prognosis of 
glioma (Liu et al., 2021). 
ST6N-acetylgalactosaminide alpha-2,6-sialyltransferase 1 
(ST6GALNAC1) appears to be a favorable prognostic marker in 
head and neck cancer (see proteinatlas.org), overexpression of 
ST6GALNAC1 in gastric, breast, prostate and ovarian cancer cell 
lines and tissues has been directly associated with poor prognosis 
(Hugonnet et al., 2021), it has been observed that other members 
of sialyltransferases family could be related with glioma 
progression (Cuello et al., 2020; Iwasawa et al., 2018; Suzuki et 
al., 2005). 

*Statistical significance with p-value < 0.05 

 
cancers (Mamizadeh et al., 2021), where NEBL 
overexpression increases cell migration 
(Hosseini et al., 2018). Currently there is no 
information on a clear correlation and 
significance of the expression of NEBL and 
gliomas beyond a study that proposes that 
NEBL is associated with tubuline (Hosseini et 
al., 2018) to a greater degree than with actin in 
the cytoskeleton of glioma cells (Dunina-
Barkovskaya, 2013). 
 
ST6GALNAC1 
The ST6GALNAC1 gene encodes a 
homonymous protein that is a sialyltransferase 
expressed in the Golgi apparatus and transfers 
sialic acid to the O-linked sugar chain of the 
spleen backbone, receptor protein and 
produces the sialyl-Tn antigen (STn antigen). 
The STn antigen is overexpressed in some 
adenocarcinomas, including colon, gastric, 
pancreatic, breast, prostate, and ovarian 
adenocarcinomas, but has limited or no 
expression in normal organs (Marcos et al., 
2004). The functions of the STn antigen are 
thought to be related to cell-to-cell attachment 
and cell migration, but recent studies have 
suggested associations with cancer 
aggressiveness and poor prognosis (Ferreira et 
al., 2013; Ozaki et al., 2012). 
 
Since ST6GALNAC1-positive cancers are 
associated with poor prognosis, targeting 
ST6GALNAC1 and STn antigen could be an 
attractive novel treatment to prevent metastasis 
and recurrence of adenocarcinomas, including 
colorectal cancer (Ogawa et al., 2017). In the 
case of gliomas and GB, it is unknown what 
their correlation and significance could be, 
since there are currently no studies in this 
regard. The confirmation of the significance of 

this gene was not established based on the 
TCGA data and therefore, more than the 
other genes, which significance was 
validated using TCGA data, it needs to be 
validated experimentally. 
 
HS3ST4 
Heparan sulfate (HS) is a highly sulfated 
glycosaminoglycan found on the cell 
surface and in the extracellular matrix. It is 
involved in cell-cell and cell-matrix 
communications and regulates the binding 
of a large number of ligands, resulting in a 
variety of physiological and pathological 
effects, such as in embryonic development, 
cell growth and differentiation, homeostasis, 
inflammatory response, tumor growth and 
microbial infection (Hellec et al., 2018). 
Altered expression of HS- modifying 
enzymes has been frequently observed in 
cancer. Consequently, dysregulation of the 
HS biosynthetic machinery results in 
dramatic changes in HS structure, affecting 
a variety of fundamental cellular processes 
involved in tumorigenesis and cancer 
progression, including proliferation, 
migration, apoptosis and immune evasion 
(Denys & Allain, 2019). 
 
It has been observed that the increase in 
the expression of HS isoenzymes such as 
HS3ST4 may involve a mechanism that 
allows tumor cells to modulate the 
activation of natural killer (NK) cells and 
thus prevent their elimination, thus 
promoting evasion of the immune system 
by tumor cells (Denys & Allain, 2019; Hellec 
et al., 2018). Although HS3ST4 is 
abundantly expressed in the cerebral cortex 
and cerebellum (Denys & Allain, 2019) to  

https://www.proteinatlas.org/ENSG00000078114-NEBL/pathology
https://www.proteinatlas.org/ENSG00000070526-ST6GALNAC1/pathology
https://paperpile.com/c/243953/AlNtV
https://paperpile.com/c/243953/6FKm1
https://paperpile.com/c/243953/ZUJqY%2BGN17P
https://paperpile.com/c/243953/YDaew%2BJi2QN
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date there are no studies that correlate its 
expression in gliomas. 
 
GCNT4 
Members of the glucosaminyl (N-acetyl) 
transferase (GCNT) family are critical 
mediators in the synthesis, branching, and 
oligomerization of the mucin backbone (H. Sun 
et al., 2020). Altered glycosylation is a hallmark 
of cancer (H. Sun et al., 2020). Members of the 
GCNT family, including GCNT2, GCNT3, and 
GCNT4, have been previously identified as 
being associated with multiple human 
malignancies, influencing cancer genesis by 
regulating cell growth and apoptosis in 
pancreatic, prostate, and colon cancer (Hu et 
al., 2021; Zeng et al., 2022). However, the 
relationship between the expression levels of 
GCNT and GC family members has not been 
thoroughly investigated, including their 
expression and significance in gliomas. 

 
Discussion 
Cancer is a group of diseases characterized by 
abnormal cell growth and the potential to 
spread. Both environmental and genetic factors 
are crucial in cancer development. At the 
cellular level, oncogenes promote uncontrolled 
growth, whereas tumor suppressor genes 
protect against malignancy. Interestingly, some 
genes, such as the NOTCH receptors—key 
components of the evolutionarily conserved  

 
Notch signaling pathway—can function 
paradoxically as both oncogenes and tumor 
suppressors, depending on the context 
(Aster et al., 2017; Shen et al., 2018; 
Soussi & Wiman, 2015; Yip et al., 2010). 
 
Transcriptomic studies help classify tumors 
into subtypes, aiding therapeutic response 
and clinical outcomes. The study's analysis 
aligns with previous classifications, 
including Verhaak et al.'s proneural, neural, 
classic, and mesenchymal GB types 
(Verhaak et al., 2010). It also considers 
potential contamination and integrates 
signaling process-based classifications 
(Kim et al., 2021; Wang et al., 2017). 
Combining transcriptional analysis results 
with these elements harmonized 
classifications, revealing proneural and 
mesenchymal characteristics, which may 
result from PMT, a mechanism similar to 
EMT in other cancers. EMT involves 
carcinoma cells improving their invasive 
capacity, losing cell polarity, and acquiring a 
mesenchymal phenotype, promoting 
metastasis (Behnan et al., 2019; Garofano 
et al., 2021; Kim et al., 2021; Wang et al., 
2017) (Figure 1a-1b). 

 
 
 
Fig 1 a-b: Proposed transcriptomic profiling and signaling pathway-based integration classification in GB. (a) Describes at 
each vertex the main transcriptomic types described to date, each edge represents subtypes based on analyzes of signaling 
pathways and transitions that have been observed experimentally between the PMT analogous to what happens in other 
types of cancer with EMT so that the tumors can manage to prosper. (b) Venn diagram between the transcriptomic types, 
subtypes based on signaling routes and clusters analyzed in this document. PRO: Proneural, MES: Mesenchymal CLA: 
Classical, GPM: Glycolytic/Plurimetabolic, MTC: Mitochondrial, NEU: Neuronal, PPR: PRoliferative/PRogenitor, PMT: 
Proneural-mesenchymal transition, 1-5 Cluster of GB patient samples analyzed. 

 

a b

https://paperpile.com/c/243953/O3A6O
https://paperpile.com/c/243953/z6i9F%2BjGTKg
https://paperpile.com/c/243953/Nc85e/?noauthor=1
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A key unresolved question is whether PMT 
arises intrinsically or is induced by the tumor 
microenvironment (TME). Some evidence 
points to PMT being triggered by external 
factors like chemotherapy and radiotherapy 
(Lau et al., 2015; Lu et al., 2012; Segerman et 
al., 2016; Yang et al., 2021), while other 
studies highlight internal master regulators 
such as STAT3, C/EBPβ, TAZ, and NF-κB as 
key drivers (Yang et al., 2021; Zhang et al., 
2020). Additionally, members of the HOX 
family of transcription factors have been 
implicated in modulating carcinogenesis, with 
context-dependent effects that can either 
promote or suppress tumor progression (Feng 
et al., 2021; Q. Li et al., 2014; Shah et al., 
2012). 
 
Within this context, several molecular markers 
have emerged as potential tools for 
classification and therapy. PDPN, a mucin-like 
transmembrane protein associated with 
lymphangiogenesis and metastasis, is widely 
expressed across tumors. Its interaction with 
receptor type C lectin-like 2 (CLEC-2) 
promotes platelet aggregation and metastasis, 
while also modulating cytoskeletal dynamics to 
enhance migration, invasion, and angiogenesis 
independently of VEGF pathways (Grau et al., 
2015; Modrek et al., 2020). Given its 
expression patterns and the results of GEPIA 
analyses, PDPN represents a promising 
marker for GB classification. 
 
Similarly, NEBL, which encodes a cytoskeletal 
matrix protein, is overexpressed in various 
high-grade and metastatic cancers (Cóser et 
al., 2010; Hosseini et al., 2018). Although it has 
not been previously linked to GB, GEPIA data 
suggest a potential association with 
progression-free survival, making it a candidate 
for further study and potential therapeutic 
targeting. 
 
Another hallmark of cancer is altered 
glycosylation, involving the dysregulation of 
sialyltransferases and heparan sulfate (HS)–
modifying enzymes (Vajaria & Patel, 2017). 
High-grade gliomas often exhibit elevated 
levels of terminal sialoglycans and 
sialyltransferases (Hugonnet et al., 2021). In 
this study, we observed aberrant expression of 
glycosylation-related genes, including 
ST6GALNAC1, GCNT4, and HS3ST4. While 
their specific roles in GB remain unclear, their 

dysregulation suggests involvement in key 
processes such as proliferation and 
migration (Denys & Allain, 2019). Notably, 
ST6GALNAC2 was enriched in E2F and 
MYC target pathways, and E2F7 has been 
shown to activate EZH2 transcription, which 
in turn induces mTOR signaling, a crucial 
pathway in glioblastoma progression 
(Ahmad et al., 2024). 
 
In addition to glycosylation-related 
pathways, remodeling of the extracellular 
matrix (ECM) plays a crucial role in glioma 
progression. This dynamic process 
facilitates the activation and migration of 
endothelial cells, thereby promoting tumor 
angiogenesis. Within this context, members 
of the collagen gene superfamily such as 
COL1A1, COL4A2, and COL6A1, have 
been implicated in the angiogenic cascade 
and may serve as potential biomarkers or 
therapeutic targets for GB classification and 
treatment (Pan et al., 2020). 
 
However, interpreting gene expression data 
related to ECM components and other 
molecular features requires consideration of 
the inherent biological complexity of 
glioblastoma. Differences in gene 
expression trends across datasets can be 
attributed to several factors, including 
biological variability, inclusion of different 
cell types, technical differences, and 
sample composition. GB's heterogeneity, 
maintained by GSCs, contributes to its 
resistance to treatment and presents 
challenges and insights for targeted 
therapies. Finally, but not least importantly, 
the observed differences in gene 
expression trends, particularly the 
significant variance between the 
GSE119834 dataset and the other four 
datasets, could be attributed to several 
factors. Biological variability is a primary 
factor, as the GSE119834 dataset includes 
glioblastoma stem cells (GSC) and neural 
stem cells (NSC) in addition to glioblastoma 
(GB) samples, while the other datasets 
focus primarily on GB and normal brain 
tissues. This inclusion of different cell types 
might influence gene expression profiles 
and lead to distinct trends. Furthermore, the 
multiform and progressive nature of GB 
may lead to the evolution of molecular 
profiles in other datasets towards those  
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observed in the GSE119834 dataset. 
Glioblastoma tumors exhibit significant 
heterogeneity at both the single-cell and spatial 
levels, driven by distinct populations of cells 
with specific transcriptional signatures and the 
unique microenvironments created by hypoxia 
gradients. This heterogeneity, as noted by (Ou 
et al., 2020), is maintained by GSCs with 
concordant genomic mutations, contributing to 
the tumor's chemo- and radioresistance. Given 
the dynamic nature of GB, the molecular 
profiles observed in the other datasets may 
transition or evolve towards those seen in the 
GSE119834 dataset, which captures the 
complexity of GB more comprehensively. This 
potential for molecular evolution highlights the 
importance of considering PMT and other 
transition mechanisms in the study of GB. 
 
The integration of data from UALCAN, TCGA, 
and GEPIA in our study has provided a 
comprehensive view of gene expression in 
glioblastoma. Each dataset has its strengths: 
UALCAN offers an accessible interface for 
survival analysis and gene expression 
validation, TCGA provides a rich, detailed 
dataset that allows for in-depth genomic and 
transcriptomic analysis, and GEPIA bridges the 
gap between TCGA cancer data and GTEx 
normal tissue data, offering a broader context 
for gene expression analysis. Despite these 
strengths, the discrepancies observed in the 
gene expression trends across these datasets 
can be attributed to several factors: 
 

● Sample Composition and Heterogeneity: 
The composition of samples in each 
dataset can differ significantly. For 
instance, TCGA and UALCAN primarily 
focus on tumor samples, while GEPIA 
includes normal tissue data from GTEx, 
which may affect comparative analyses. 

● Technical Variations: Differences in 
sequencing technologies, data processing 
pipelines, and normalization methods 
across these platforms can lead to 
variability in gene expression 
measurements. 

● Biological Variability: Intrinsic biological 
differences, such as tumor heterogeneity, 
different subtypes, and the tumor 
microenvironment, can contribute to 
inconsistent gene expression patterns 
observed in different datasets. 

 

 
Our study demonstrates that integrating 
multiple datasets can enhance the reliability 
of biomarker identification and provide a 
more nuanced view of the molecular 
underpinnings of glioblastoma. 
 

Conclusions 
Glioblastoma is one of the most aggressive 
and lethal human brain tumors. The high 
invasiveness, the propensity to disperse 
throughout the brain parenchyma, and the 
elevated vascularity and necrosis make 
these tumors extremely recidivist, resulting 
in a short patient median survival even after 
surgical resection and chemoradiotherapy 
(D’Alessio et al., 2019). There is a growing 
body of evidence demonstrating the 
existence of PMT, which suggests that first-
line therapy for a primary disease may not 
work effectively for recurrent tumors due to 
this situation (Kim et al., 2021). In order to 
contribute to the understanding, diagnosis 
and treatment of glioblastoma, 
transcriptomic studies for tumor 
classification are crucial for classifying 
tumors into subtypes, aiding in therapeutic 
response and clinical outcomes. The 
classifications align with prior studies and 
integrate signaling processes. Proneural-
Mesenchymal Transition is analogous to 
EMT in other cancers and is significant in 
GB. PMT may be intrinsic or induced by 
external factors like chemotherapy, 
radiotherapy, or master regulators such as 
STAT3 and NF-KB. 
 
Regarding the potential biomarkers we 
identified through the integrative 
transcriptomic analysis and further 
confirmation, the main findings are that 
PDPN is associated with 
lymphangiogenesis and metastasis, making 
it an attractive marker for GB classification. 
Collagen Superfamily genes like COL6A1 
are significant in tumor angiogenesis and 
prognosis. NEBL, a cytoskeletal matrix 
protein, is also proposed as a potential 
target for GB therapy. The altered 
Glycosylation represented by 
sialyltransferases and HS modifying 
enzymes show altered expressions, 
indicating a role in cancer progression that 
could be used for therapeutic decisions. 
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Moreover, it is important to mention that 
differences in gene expression trends across 
datasets are due to biological variability, 
inclusion of different cell types, technical 
differences, and sample composition. GB's 
heterogeneity contributes to its treatment 
resistance and presents challenges and 
insights for targeted therapies and findings 
need to be validated in different populations 
and ancestries. These findings underscore the 
importance of considering various genetic, 
molecular, and environmental factors in 
developing effective cancer treatments, 
particularly for GB. It seems clear that to 
combat GB there must be a change from 
classic cytotoxic chemoradiotherapy to more 
targeted therapies, considering the high degree 
of heterogeneity and molecular complexity of 
the tumor. GB subtyping is a key process to 
impact a patient's survival by providing 
targeted therapies. 
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