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Resumen 
Los hongos entomopatógenos, a menudo considerados únicamente como patógenos de insectos, 
desempeñan funciones adicionales en la naturaleza, incluidos el endofitismo, el antagonismo de las 
enfermedades de las plantas y la promoción del crecimiento de las plantas. Estos roles permiten 
brindar oportunidades para el uso múltiple de estos hongos en estrategias de manejo integrado de 
plagas (MIP).  Este artículo revisa los avances más recientes en el uso del hongo entomopatógeno 
Beauveria bassiana, su control en insectos plaga y en la colonización endofítica de diferentes plantas 
hospedantes. También aborda los posibles mecanismos de protección conferidos por Beauveria 
bassiana como hongo entomopatógeno y como hongo endófito y explora el uso potencial del mismo 
en el control biológico dual. Finalmente, se resumen las limitaciones actuales y las direcciones que 
debería tener las investigaciones futuras con respecto a Beauveria spp. como agente de control 
biológico dual. 
 
 
 
Palabras Claves: Hongos endófitos, Hongos entomopatógenos, Plagas, Biocontrolador, PGP, Beauveria 
bassiana. 

 

. 

Abstract 
Entomopathogenic fungi, often considered only as insect pathogens, perform additional functions in 
nature, including endophytism, antagonism of plant diseases and promotion of plant growth. These 
roles allow opportunities for the multiple use of these fungi in integrated pest management (IPM) 
strategies. This article reviews the literature currently available on the entomopathogenic fungus 
Beauveria bassiana, its control in insect pests and in the endophytic colonization of different host 
plants. It also addresses the possible protection mechanisms conferred by Beauveria bassiana as 
an entomopathogenic fungus and as an endophytic fungus and explores its potential use in dual 
biological control. Finally, we summarize the current limitations and directions that future research 
should have regarded Beauveria spp. as a dual biological control agent. 
 
 
 
 
Key Words: Endophyte fungus, Entomopathogenic fungus, Pests, Biocontroller, PGP, Beauveria 
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Introduction  
The applications of B. bassiana are broad in 
Integrated Pest Management (IPM), as they 
can encompass fields ranging from agriculture 
(Ranesi et al., 2024; Afandhi et al., 2023; Iida 
et al., 2023), food production (Amobonye et 
al., 2022; Gutiérrez-Román et al., 2022) and 
even the field of medicine, through the control 
of vector insects that transmit diseases to the 
population (Pirmohammadi et al., 2023; 
Tawidian et al., 2023; Vivekanandhan et al., 
2022). 
 
Many species of the genus Beauveria are 
morphologically similar, leading to the 
formation of complexes such as the B. 
bassiana complex and the B. 
subscarabaeidicola complex, which are 
composed of species such as B. 
subscarabaeidicola, B. songmingensis, B. 
polyrhachicola, B. caledonica, B. blattidicola, 
among others (Wang et al., 2022), the most 
notable advantages these fungi offer to plants 
are protection against endophytic pathogens 
such as bacteria and phytopathogenic fungi, 
such as Fusarium, Epicoccum sp., Alternaria 
burnsii, (Pachoute et al., 2024), Botrytis 
cinérea (Sui et al., 2023), etc. B. bassiana it is 
a generalist entomopathogenic fungus that 
initiates its cycle by penetrating the hard 
chitinous cuticle of insects, producing 
secondary metabolites directly in the 
hemocoel, which causes the death of the 
insect (Pedrini, 2022).  
 
Aspects such as host compatibility and severe 
environmental variations can lead to a loss in 
the viability of fungal conidia (Quesada-
Moraga et al., 2024); this is why it is necessary 
to standardize the processes for the mass 
production of entomopathogenic fungi as 
biocontrol agents (Jaronski, 2023).  
 
Entomopathogenic fungi like B. bassiana 
research has been mainly directed to develop 
them as biological control agents for insects, 
the great potential of this fungus in pest control 
has been widely demonstrated (Swathy et al., 
2024; Liu et al., 2023; Pirmohammadi et al., 
2023; Tawidian et al., 2023; Wakil et al., 2023; 
Chouikhi et al., 2022; Idrees et al., 2022; 
Vivekanandhan et al., 2022; Wang et al., 
2022; Zhang et al., 2022), even though it is 
effective on its own, it has been found that 
symbiosis with bacteria such as 

Pseudomonas spp., promotes the vegetative 
growth of the fungus, accelerating the 
mortality of infected insects (Liu et al., 2023). 
 
Although its most common use is as a 
biopesticide (Pedrini et al., 2024), it is 
considered a potential source of research from 
the metabolomics and transcriptomics 
perspective, which will allow the identification 
of metabolites synthesized by the fungus, 
potentially useful in numerous aspects across 
various fields of knowledge (Fei et al., 2024). 
 
This article reviews the available literature on 
the potential of the entomopathogenic fungal 
Beauveria spp. as biological pest insect 
controller and its endophytic colonization in 
different plants, The European Commission 
has recently published a report on the impact 
of the Community’s agricultural policy on the 
Mediterranean. In addition, it describes the 
control mechanisms used by fungal 
entomopathogen as pest insect controller and 
diseases of agricultural plants and discusses 
the interactions of Beauveria spp. as 
endophyte with other endophytes. Finally, 
current research and future research direction 
to potentially use Beauveria spp. as a dual 
biological control agent are discussed and 
concluded. For this reason, a review divided 
by item is presented below about the 
Beauveria spp. as a dual biological control 
agent in agricultural crops. 
 

 
Beauveria spp. and biological pest 
control insects 
The cosmopolitan species of Beauveria are 
particularly suitable as possible biological 
control agents for insect pests, this is because 
its range of hosts is extremely diverse, can be 
produced in mass easily and has an 
extraordinary mechanism in the process of 
pest insect infection (Blond et al., 2018). 
 
Among the research known is the colonization 
of B. bassiana allowed the reduction of 
damage caused by trappers and lepidoptera 
stems in corn (Bruck & Lewis, 2002), Banana 
Gorgon (Luo et al., 2015; Akello et al., 2008), 
the fruit worm of the tomato Helicoverpa zea 
(Abdul et al., 2015), the cutting ant Atta 
cephalotes (López & Orduz, 2002), the corn 
stalk sweeper Sesamia nonagrioides (Verma, 
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2014), the onion thrips, the cotton worm 
(Castillo & Sword, 2015), among others.  
Additionally, the control exerted on insect 
species that damage tea crops has been 
demonstrated (Bhattacharyya et al., 2023). To 
prevent resistance to insecticides, it has been 
opted to use a combination of insecticide 
doses with B. bassiana doses in both field and 
laboratory conditions. As mentioned by Wakil 
et al. (2022), they used concentrations of 
fipronil with B. bassiana to test its insecticidal 
effect on beetles such as Rhyzopertha 
dominica, Tribolium castaneum, Sitophilus 
granaries, and Trogoderma granarium, 
obtaining higher mortality in formulations with 
fipronil and B. bassiana, temperature 
influenced the results, as the highest mortality 
was reached at 30°C, with R. dominica being 
the most susceptible. On the other hand, B. 
brongniartii has also been tested for the 
control of two hemipterans, Rhopalosiphum 
padi and Sitobion miscanthi, which damage 
wheat crops in China, causing high mortality 
starting from day three in both larvae and 
adults (Tian et al., 2024). 
 
Coffee (Coffea arabica) has been threatened 
by diseases such as coffee berry borer caused 
by the beetle Hypothenemus hampei, in which 
infected fruits were treated with B. bassiana, 
achieving 100% mortality (Krutmuang et al., 
2023). The potato (Solanum tuberosum) crop 
is also affected by pest insects, with the most 
important being Phthorimaea operculella, a 
moth that feeds inside the plants, making its 
control difficult. Good results have been 
obtained in controlling this insect using potato 

plants infected with B. bassiana (Eltair et al., 
2024; Zhang et al., 2023a; Zhang et al 2022). 
From a different perspective, highlighting the 
entomopathogenic characteristic previously 
mentioned of the fungus, the mycoproteins of 
B. bassiana can be derived from a substrate 
composed of insects such as Eurysacca 
melanocampta and H. hampei, transforming 
them into more proteins for utilization in the 
food industry (Gutiérrez-Román et al., 2022).  
 
There are studies that test the larvicidal 
activity using the metabolites directly 
produced by B. bassiana. An example is the 
metabolites extracted from the fungus against 
Tuta absoluta, causing 80% mortality at 24 
and 48 hours after treatment with these 
compounds (Vivekanandhan et al., 2024). It 
has been shown that the metabolites α-
solanine, 5-O-caffeoylshikimic acid, 
clerodendrin A, and peucedanin have 
insecticidal activity, as plants infected with B. 
bassiana overexpress these metabolites, 
providing protection to tomato plants against 
Bemisia tabaci (Wang et al., 2023). 
 

Mechanism of action 
The development of Beauveria disease 
towards the insect pest is divided into three 
phases: (1) adhesion and germination of the 
spore of the entomopathogenic fungus in the 
cuticle of the insect, (2) hemocele penetration 
and (3) hemocele replication (Jaber & 
Alananbeh, 2018; Guesmi-jouini et al., 2014; 
Krasno et al., 2014) (Figure 1). 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Development of B. bassiana in insects. (Jaber & Alananbeh, 2018; Guesmi-jouini et al., 2014; Krasno et al., 2014). 
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Created in BioRender. Reyes-Silva, R. (2024) https://BioRender.com/s58x425. 

(1) Adhesion and germination of the spore 
After the spores have been dispersed by biotic 
or abiotic factors, they can enter the insect 
through the mouth, spiracles, anus, or its 
surface. Once attached, a set of enzymes is 
released to infiltrate the insect. (Altinok et al., 
2019). Germination (Figure 1) is a process by 
which a spore emits one or more small 
germinative tubes that, as they grow and 
lengthen, give rise to hyphae, this process 
depends on the conditions of humidity and 
ambient temperature.  The success of 
germination and penetration does not depend 
on the percentage of germination but on the 
time of the duration of germination, the mode, 
aggressiveness of the fungus, type of spore 
and host susceptibility (Guesmi-jouini et al., 
2014). 
 
(2)  Penetration into the hemocele 
The penetration process is possible thanks to 
a combination of physical and chemical 
mechanisms. The physical mechanism is 
given by the pressure exerted by the haustory 
which first deforms the cuticular layer then 
breaking up the sclerosed and membranous 
areas of the cuticle (Figure 1). The chemical 
mechanism consists, on the other hand, in the 
enzymatic action mainly of hydrolytic activities 
such as protease, lipase and chitinase, which 
degrade the tissue in the area of penetration 
facilitating the entrance of the fungus; another 
mechanism used by fungal entomopathogens 
such as Beauveria to penetrate the hemocele 
is the oral cavity, spiracles and other external 
openings of the insect. (Jaber & Alananbeh, 
2018).  
 
(3)  Replication in the hemocoel 
When the spores of entomopathogenic fungi 
reach the hemocele, most of them make a 
dimorphic transition from mycelium to yeast. 
Mycosis induces abnormal physiological 
symptoms in the insect such as convulsions, 
lack of coordination, altered behaviors and 
paralysis. Death occurs due to a combination 
of effects including physical tissue damage, 
toxicosis, dehydration of cells by loss of fluid 
and nutrient consumption (Quiroz et al., 2008). 
Also, it has been observed that to prevent the 
attack of the insect’s immune system, fungi 
often do without cell wall formation and 
develop as protoplasts, avoiding recognition 
by circulating hemocytes in the hemocele, 
when the nutrients from the insect, particularly 

the nitrogen sources, become depleted, the 
yeast-like phases resume their mycelial 
growth (Figure 1) (Krasno et al., 2014). 

 
Beauveria and its function as a 
benefical endophyte 
The term endophyte refers to microorganisms 
that colonize the interior of plant tissues 
without causing apparent damage to host 
plants. Endophyte fungi have been found in all 
types of plants, from those living in the arctic 
to the tropics, as well as in agricultural fields 
(Sánchez-Fernández et al., 2013). One of the 
main investigations on the introduction of the 
entomopathogenic fungus Beauveria is 
presented by Lewis and Cossentine in 1986; 
where B. bassiana was established as an 
endophyte after aqueous application to the 
maize plants Zea may L. (Poaceae), for the 
suppression of the European corn sweeper 
Ostrinia hubialis (Hübner) (Lepidoptera: 
pyradilae) throughout the season (Verma, 
2014). 
 
B. bassiana has been extensively studied for 
the symbiosis it forms when infecting hosts of 
agro-industrial importance, thus improving 
their performance. An example of this is the 
increased size of tomatoes (Solanum 
lycopersicum), which are larger in plants 
colonized with B. bassiana than in plants 
without the fungus (Sui et al., 2023). Similarly, 
it has been tested in melon (Cucumis melo) 
and strawberry (Fragaria sp.) crops, even 
achieving infection rates of 100% in tissues of 
both pot and field crops, providing resistance 
against pests such as moths, mites, 
hemipterans, among others (Mantzoukas et 
al., 2022). Other investigations where B. 
bassiana has been reported as endophyte are 
that of (Guesmi-jouini et al., 2014) where it 
was shown that ten days were sufficient to 
confirm that B. bassiana could be established 
endophytic in the artichoke Cynara scolymus. 
In sugarcane, B. bassiana was shown to 
endophytically colonize this agricultural plant 
and improve root establishment (Kasambala 
et al., 2018).  
 
Beauveria spp. has also been shown to have 
dual biological control in the bean, naturally 
occurring in soil and plant; allowing the control 
of the insect Piezodorus guildinii and as a 
natural endophyte of the common bean plant 
Phaseolus vulgaris (Ramos et al., 2017). On 
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the other hand, (Castle & Sword, 2015) 
provided evidence that B. bassiana and 
Metharizum brunneum can effectively inhibit 
the growth of several Furasium species that 
cause root rot in cotton plants and  (Greenfield 
et al., 2016) demonstrated that B. bassiana 
and M. anisopliae can control the disease 
causing whitefly Aleurotrachelus socialis and 
the same in the yucca plant, obtaining that B. 
bassiana has the highest levels of colonization 
in plants and exerts a better control on the 
diseases of the same (84% control). 
 
The dual effect of B. bassiana has been 
demonstrated in both promoting growth in 
plants and providing protection against pests 
in crops (Figure 2), such as melon (C. melo), 

strawberry (Fragaria sp.) (Mantzoukas et al., 
2022), tomato (S. lycopersicum) (Sui et al., 
2023; Zheng et al., 2023), sugar beet (Beta 
vulgaris L) (Darsouei et al., 2024); it has been 
tested against the Asian corn borer O. 
furnacalis, achieving good results in biomass 
and protection against the borer (Sui et al., 
2024b). Similarly, the resistance to abiotic 
stress in plants with B. bassiana has been 
tested, improving drought tolerance in tomato 
plants (Guo et al., 2024). It also induces 
resistance in potato plants against salt stress, 
showing higher tolerance when infected with 
B. bassiana compared to the controls 
(Tomilova et al., 2023). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Dual effect of B. bassiana on plants (Swathy et al., 2024; Tawidian et al., 2023; Idrees et al., 2022; Zhang et al., 
2022). Created in BioRender. Reyes-Silva, R. (2024) https://BioRender.com/s58x425. 
 

Other research shows that Beauveria spp. has 
been the most studied entomopathogenic 
fungus as endophyte for disease control in 
plants demonstrating its good response in 
agricultural crops of tobacco (Nicotiana 
tabacum) (Taylor et al., 2014), pumpkin 
(Curcubita sp.) (Jaber & Salem, 2014), millet 
(Panicum miliaceum)(Reddy et al., 2009), 
tomato (S. lycopersicum) (Abdul et al., 2015), 
sweet pepper (Capsicum annuum) (Kumar et 
al., 2016), banana (Musa paradisiaca L) 
(Akello et al., 2008) coffee (C. arabica) (Vega 
et al., 2010), among others. 
 
 
 

Promotion of host plant immunity by 
Beauveria 
Crops are always exposed to biotic factors, 
which is why it was necessary to develop a 
defense system against threats such as 
bacteria, viruses, fungi, insects, herbivores, 
among others, which can represent potential 
diseases leading to death (Ngou et al., 2022a). 
The immune system in plants is based on 
Pattern Recognition Receptors (PRRs), which 
are extracellular, and Nucleotide Binding 
Leucine-Rich Receptors (NLRs), which are 
intracellular. The activation of these receptors 
triggers an immune response that in turn 
produces metabolites such as phytohormones 
and reactive oxygen species (ROS) to defend 

https://biorender.com/s58x425
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against infection or damage (Ngou et al., 
2022b). In the search for the role of B. 
bassiana in improving the immune system of 
host plants, it was found that they directly act 
on the production and control of reactive 
oxygen species (ROS). 
 
The symbiosis between endophytic fungi and 
plants leads to a significant improvement in 
defense against endophytic pathogens, 
enhancing the plant's immune system. It has 
been shown that the colonization of B. 
bassiana in tomato plants increases the 
production of reactive oxygen species (ROS) 
(Gupta et al., 2022). Similarly, infections by the 
pathogen B. cinerea in tomato plants also 
increase ROS production and, consequently, 
oxidative stress in the plant. Plants colonized 
with B. bassiana show higher production of 
SOD-type enzymes that reduce oxidative 
stress caused by ROS (Proietti et al., 2023). 
 
Beauveria control mechanism in 
agricultural plant diseases 
The function of endophytic fungi in host plants 
is well known, as they not only protect against 
insects but also against pathogenic 
microorganisms that can cause diseases. Its 
effect has been tested against B. cinerea, 
inhibiting the growth of the pathogen (Sui et 
al., 2022), as well as against F. oxysporum 
(Nchu et al., 2022), fungi that cause significant 
diseases in crops such as tomatoes (S. 
lycopersicum) and grapes (Vitis vinifera). It 
has also been tested in ornamental and food 
crops like sunflower against the disease 
caused by Sclerotinia sclerotiorum, 
significantly suppressing this pest (Sui et al., 
2024a). The following outlines the role of B. 
bassiana in phytopathological diseases. 
 
(1) Direct suppression of plant pathogens 
Entomopathogenic fungi such as Beauveria 
when acting as endophytes can directly 
suppress plant pathogens through 
mycoparasitism. Mycoparasitism is mainly 
characterized by forming hyphae wrapped 
around the host fungus’s hyphae (Quiroz et 
al., 2008). The colonization of Beauveria 
occurs through plant tissues involving host 
recognition, spore germination, the 
penetration of the plant surface and the 
colonization of tissues (Mendiola-soto & Heil, 
2014). Once Beauveria as endophyte 
colonizes the plant, it occupies a niche by 
depleting the nutritional resources of the plant 

without leaving any available for the plant 
pathogen. Moreover, antibiosis is produced by 
secondary metabolites; these confer 
protection against plant pathogens that cause 
diseases and insect pests (Ownley et al., 
2010). 
  
In vivo inoculations of B. bassiana in plants 
have been conducted to test its antiparasitic 
effect. Sui et al. (2023) found that in tomato 
plants grown in pots and in the field, once 
inoculated with B. bassiana and exposed to B. 
cinerea, the plants that showed the smallest 
lesions on their leaves were the experimental 
plants, both in pots and in the field. The effect 
of B. bassiana against the cucumber mosaic 
virus in cucumber plants has also been 
studied, observing that the virus can alter the 
plant's metabolites to enhance its infection. 
The use of the fungus mitigates the negative 
effect on the plant and inhibits the virus 
(Shaalan et al., 2022).  
 
Some viruses, such as the beet yellowing 
virus, appear to not be inhibited by B. 
bassiana, but it somewhat reduces the viral 
load and protects against the aphid Myzus 
persicae, the main vector of the virus 
(Dessauvages et al., 2024). Studies have 
been conducted on the effect of B. bassiana 
with beneficial soil bacteria and some that are 
symbiotic with the fungus, showing 
compatibility with bacteria such as Bacillus 
subtilis (Kramski et al., 2023). However, it has 
also been shown to have a bactericidal effect 
against Xanthomonas euvesicatoria (Gupta et 
al., 2022). Positive results have also been 
obtained against Pseudomonas aeruginosa, 
P. fluorescence, X. campestris and 
Clavibacter michiganensis (Camele et al., 
2023). 
 
(2) Induction of systemic plant resistance. 
Induced systemic resistance is an important 
plant defense mechanism against a wide 
range of plant pathogens and insect pests 
(Pieterse et al., 2014). This defense 
mechanism allows to reduce the symptoms of 
the disease in parts of the plant away from the 
site where the inducer is active. Systemic 
resistance induced has been demonstrated in 
cotton seedlings inoculated with strain 11-98 
of B. bassiana which was soaked in the plant 
root and followed by folia attack of 
Xanthomonas sp., 13 days later. Significant 
reduction in disease was obtained for plants 
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not inoculated with B. bassiana (Ownley et al., 
2010; Griffin, 2007). Suppression or delay in 
the development of symptoms is also 
considered a mechanism of SRI, this was 
evidenced in zucchini (C. pepo) plants 
colonized by several strains of B. bassiana 
(Jaber & Salem, 2014) where plants 
inoculated with the entomopathogen 
presented a low rate of viral multiplication 
compared to those that were not inoculated. 
 
Systemic resistance in plants induced by 
Beauveria spp. has been demonstrated in 
multiple studies (Eltair et al., 2024; Sui et al., 
2023; Tomilova et al., 2023; Bhattacharyya et 
al., 2023; Tomilova et al., 2023; Zhang et al., 
2023a; Mantzoukas et al., 2022; Zhang et al., 
2022), this resistance provides an advantage 
to the host plants, as they exhibit greater 
resistance to biotic (Dessauvages et al., 2024; 
Kramski et al., 2023; Shaalan et al., 2022) and 
abiotic factors (Guo et al., 2024; Tomilova et 
al., 2023) when infected with B. bassiana 
compared to those that are not (Sui et al., 
2024a), demonstrating its potential as a 
beneficial endophyte in integrated pest, 
vector, and disease management in plants 
(Abd El-Wahab et al., 2023; de Oliveira et al., 
2023; Yasin et al., 2022; Zamora-Áviles et al., 
2022; Chouikhi et al., 2022). 
 
(3) Promotion of plant growth 
Another mechanism used by fungal 
entomopathogens as endophytes is the 
protection of their host plant through improved 
plant growth (Gana et al., 2022). Fungal 
entomopathogens have been shown to 
promote plant growth after endophyte 
establishment thus avoiding abiotic and biotic 
stress (Liu et al., 2022). Example of promoting 
plant growth is found in pumpkin (Curcubita 
sp.) plants colonized with B. bassiana against 
ZYMV (Kesh & Yadab, 2023; Jaber & Salem, 
2014) which not only reduced the disease but 
also proved more vigorous and developed 
faster. The same has been demonstrated with 
plants exposed to F. solani (Deng et al., 2018) 
showed healthy growth and lower disease 
rates compared to plants not colonized. 
 
It should also be noted that the inoculation of 
plants with fungal entomopathogens has 
induced proteins related to photosynthesis 
and energy metabolism, which leads to 
increased plant growth and disease resistance 
(Gómez-Vidal, 2009). The improved growth 

can also be attributed to the production of 
phytohormones as in the case of B. bassiana 
which produces siderophores under iron 
depletion culture conditions (Jirakkakul et al., 
2014; Krasno et al., 2014). Finally, it should be 
noted that the ability of several species of 
fungal entomopathogens such as B. bassiana, 
B. brongniartii and M. brunneum depend on 
the method used for inoculating plants with the 
strains of fungi or the combination thereof.  
 
Similarly, the promotion of plant growth 
produced by B. bassiana can explain the 
resistance to various types of abiotic stress, 
such as salinity, as it can stimulate the 
production of phytohormones, antioxidants, 
flavonoids, photosynthetic pigments, among 
others (Abdelhameed et al., 2024; 
Papantzikos et al., 2024; Akter et al., 2023). 
Furthermore, this fungus can be leveraged to 
increase yields in vegetable crops such as 
tomatoes (S. lycopersicum), onions (Allium 
cepa), potatoes (C. tuberosum), corn (Z. may), 
cucumbers (C. sativus), peppers (Capsicum 
spp.), among others (Eltair et al., 2024; 
Mohammed et al., 2024; Russo et al., 2023; 
Saragih, 2023; Zhang et al., 2023a; Gana et 
al., 2022; Liu et al., 2022; Shaalan et al., 2022; 
Zhang et al., 2022). 

 
Current limitations and future 
studies 
Although there are not many studies, some 
resistance presented by insects against B. 
bassiana has been found. Gao et al. (2022) 
discovered that young larvae of Spodoptera 
frugiperda produce protective and detoxifying 
enzymes against B. bassiana infections, which 
are characteristic of the early larval stages, 
potentially conferring resistance to the larvae 
against the fungus’s infection mechanisms. 
Also, S. frugiperda produces antimicrobial 
peptides such as lepidopterin, which can 
inhibit B. bassiana spores (Qi et al., 2024). 
Some insects, like the beetle T. castaneum, 
secrete defensive compounds against 
pathogens, allowing them to inhibit the 
development of B. bassiana (Davyt-Colo et al., 
2022).  
 
The efficacy of metabolites extracted from 
Beauveria spp. has been tested, proving to be 
more stable than the fungi themselves, making 
it a promising tool against resistance 
developed by some insects to the fungus, as 
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these insects depend on environmental 
conditions for development (temperature, 
humidity, UV light) (Kramski et al., 2023). 
Good results have been obtained using 
extracts of Achyrocline satureioides and B. 
bassiana against Rhipicephalus microplus, 
causing high mortality in both larvae and 
adults. However, when the extracts were used 
together with B. bassiana, 100% mortality was 
achieved (Fantatto et al., 2022). Kim et al. 
(2024) extracted and identified 8 metabolites 
(bassianin, bassianolide, beauvericin, 
beauveriolide I, enniatin A, A1, and B, and 
tenellin) present in the infection of Tenebrio 
molitor by B. bassiana using UPLC-Q-Orbitrap 
MS, with the main ones being bassianolide 
and beauvericin, which are promising for 
biopesticide development. Metabolites from B. 
bassiana have also been obtained through 
fermentation, including oosporein, which was 
able to inhibit spores of Gibberella 
moniliformis (Ávila-Hernández et al., 2022). 
 
In the same way, it may occur that some crops 
are not compatible with the plant, despite the 
search for sustainable alternatives like 
inoculation with B. bassiana. An example is 
the search for pest resistance in the canola 
crop, Brassica napus, infected with B. 
bassiana, which resulted in longer germination 
times compared to the controls. However, it 
stimulated the production of flavonoids (Muola 
et al., 2024). 
 
Future studies on the metabolism of B. 
bassiana that will focus on omics sciences 
(genomics, metabolomics, proteomics, 
transcriptomics, etc.) (Biswas et al., 2024; Wei 
et al., 2024; Hou et al., 2023; Mannino et al., 
2023; Li et al., 2023a; Li et al., 2023b; Litwin et 
al., 2023; Sun et al., 2023; Zhang et al., 2023b; 
Guan et al., 2022; Li, 2022; Lin et al., 2022)  
will be key in understanding the genes and 
proteins involved in host infection, pathogen 
and disease protection, plant growth 
promotion, and the search for biotechnological 
metabolites of interest for the production of 
bioformulations that replace agrochemical 
products used in integrated pest management, 
which cause severe damage to the ecosystem 
and human health. 

 
Conclusions 
Entomopathogenic fungi are a unique and 
highly specialized group in pest insect control. 
Although there are more than 700 species of 

fungal entomopathogens (Angelone & 
Bidochka, 2018), most of the mushrooms sold 
are concentrated in the Beauveria species, 
Metarthizium, Isaria and Lecanicillium. In the 
case of Beauveria, the species on which the 
research is concentrated are B. bassiana and 
B. brongniartii (Vega et al., 2009) This leads to 
the conclusion that a better understanding of 
the ecology of this species would allow for the 
expansion of the development and uptake of 
dual biological control in conventional 
agriculture. Being B. bassiana a cosmopolitan 
species, it exhibits great genetic diversity (Li et 
al., 2023a; Li et al., 2022), which in turn 
facilitates the acquisition of strains through 
isolates from infected insects from various 
regions, with different adaptations to various 
pathogens and plant pests (Tian et al., 2024; 
Ranesi et al., 2024; Sun et al., 2023; Idrees et 
al., 2022). 
 
Entomopathogens like endophytes are 
becoming a potential group of microbial 
biological control as could be observed in the 
collection of some studies carried out in this 
review. The use of Beauveria as a treatment 
for seeds introduced at an early stage of plant 
development allows to obtain a higher result in 
dual biological control, overcoming several 
inherent problems such as damage from UV 
radiation, reduced humidity and excessive 
precipitation (Pachoute et al., 2024; Muola et 
al., 2024; Akter et al., 2023; Posada & Vega, 
2006). 
 
The extent and persistence of endophytic 
fungal colonization within plants can be 
improved by repeated application of the 
microbial agent through foliar spraying or 
soaking in the soil The European Commission 
(Eltair et al., 2024; Mantzoukas et al., 2022; 
Jaber & Ownley, 2018). Finally, the challenge 
as researchers is to pave the way for the full 
potential of fungal entomopathogens as 
endophytes for integrated multiple pest 
management. However, several problems 
must be addressed mainly related to the 
consistency of plant colonization (Muola et al., 
2024), subsequent endophytic protection (Guo 
et al., 2024; Eltair et al., 2024; Muola et al., 
2024; Bhattacharyya et al., 2023), the 
resistance of some insects to Beauveria spp. 
(Qi et al., 2024; Davyt-Colo et al., 2022; Gao 
et al., 2022), the compatibility of host plants 
with the fungus (Muola et al., 2024), the 
symbiosis with endophytic and beneficial soil 
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bacteria (Muola et al., 2024; Kramski et al., 
2023; Liu et al., 2023); along with the 
development of new tools in the field of omics 
sciences, will provide a better understanding 
of the genes that regulate the proteins 
involved in the fungus metabolism, enabling 
the acquisition of biotechnologically relevant 
metabolites (Biswas et al., 2024; Litwin et al., 
2023; Guan et al., 2022; Li, 2022). 
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