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Abstract  
The omics era has eased the access to high throughput biological data such as annotated genomes, 

transcriptomes, proteomes, metabolomes, etc. Genome-scale data can be integrated into metabolic 

reconstructions to obtain an integrated picture of the physiological state of a specific organism through 

gene-reaction-protein associations. Genome-scale models (GEMs) allow the improvement of strain 

metabolism using both, non-genetic engineering, and genetic engineering techniques and metabolic 

fluxes simulations, resulting in optimized processes of metabolite production, media formulation, 

growth rate, or compound degradation rate (i.e., pollutants). The applications of GEMs enlarge as the 

access to omics data increases. Bioremediation applications of GEMs are particularly interesting due 

to the design of rational strategies that are more effective than trial and error traditional approaches. 

The aim of this review is to describe the advances made in bioremediation using GEMs of individual 

strains and microbial communities in order to guide design of metabolic engineering strategies applied 

to bioremediation. We further discussed opportunities in oil bioremediation integrating the different 

approaches of GEMs use here reviewed. 

 

Key words: Genome-scale models, metabolic engineering, bioremediation, microbial community 

engineering, oil spill water contamination. 

 

Resumen 

La era de las ciencias ómicas ha facilitado el acceso a información biológica de alta calidad, como 

genomas anotados, proteomas, metabolomas, etc., estos datos pueden ser integrados en modelos 

metabólicos a escala genómica (GEMs) para obtener una mejor perspectiva del metabolismo de un 

organismo específico a través de asociaciones gen-reacción-proteína. Los GEMs permiten el 

mejoramiento de cepas utilizando técnicas tradicionales y de ingeniería genética, así como 

simulaciones de flujos metabólicos, resultando en procesos optimizados de producción de 

metabolitos, formulaciones de medios de cultivo, tasas de crecimiento, o tasas de degradación de 

compuestos (como contaminantes). Las aplicaciones de los GEMs van en aumento conforme el 

acceso a información ómica incrementa. El uso de GEMs en bioremediación es particularmente 

interesante debido al diseño de estrategias racionales que son más efectivas que los enfoques 

tradicionales de prueba y error. El propósito de esta revisión es describir los avances hechos en 

bioremediación mediante la aplicación de GEMs en cepas individuales y comunidades microbianas, 

así como guías para la toma de decisiones en las estrategias de ingeniería metabólica aplicadas a 

la biorremediación. Asimismo, discutimos oportunidades en la biorremediación de hidrocarburos 

mediante la integración de las diferentes aplicaciones de los GEMs cubiertas en esta revisión. 

 

Palabras clave: Reconstrucciones metabólicas a escala genómica, ingeniería metabólica, 

biorremediación, ingeniería de comunidades microbianas, contaminación de agua por hidrocarburos. 
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Introducción 
Mexico’s economy heavily depends 

on the oil industry, most activities in the 
country use fossil fuels, and a considerable 
proportion of government budget is destined to 
oil (Bermudez Delgado et al., 2018). However, 
Mexico follows the global trend regarding use 
of oil; according to Wu and Chen (2019) crude 
oil constituted approximately 34.21% of the 
total primary energy supply in 2017, having the 
United States, China, South Korea, Japan and 
Canada as the main users. Beyond 
representing an economic concern, the 
extensive use of oil and its derivatives 
constitutes an enormous risk to the 
environment. Oil handling (including its 
exploitation, use, transport and disposal) 
represents an environmental threat due to 
accidental spills; it is estimated that more than 
7 million tons of oil have been released to the 
environment since the first reported oil spill in 
1907 (Li et al., 2016). 

Mexico has been affected by the two 
largest accidental marine oil spills in history, 
the Deepwater Horizon Disaster (DWH) in the 
Gulf of Mexico (585,000 tons), and the Ixtoc I 
oil spill in Campeche Bay (480,000 tons) 
(Rafferty, 2021). Oil spills consequences span 
the social, environmental, and economic 
spheres. Two of the most famous spills, 
Deepwater Horizon and Exxon-Valdez 
disasters, had serious impacts; for instance, 
approximately more than 250,000 seabirds 
died after the latter occurred, and the former 
costed more than US$61 billion (Li et al., 
2016). Deepwater Horizon Disaster 
repercussions persist more than 10 years 
later, affecting the biodiversity in the Gulf of 
Mexico, health and socioeconomic wellness of 
Mexico and USA shore population (Sandifer et 
al., 2021). 

Several approaches help remediation 
and prevention of oil spills, including physical, 
chemical, thermal, and biological methods. 
While widely used, the physical and chemical 
methods have limitations that decrease their 
efficacy and reliability (Ndimele et al., 2018). 
Physical methods are mainly focused on 
containing the oil with using physical barriers; 
this involves a significant amount of work 
force. While chemical methods certainly 
diminish human intervention, they are subject 
of public concern due to health risks 
associated to their use. A study found 

increased neurological symptoms in workers 
exposed to chemical dispersants compared to 
workers that were not exposed to it during the 
DWH disaster (Krishnamurthy et al., 2019). 

Biological methods, also called 
“bioremediation”, are the most promising and 
advantageous water and soil clean-up 
techniques for heavy metals and organic 
pollutants released to the environment (Tyagi 
et al., 2011). Bioremediation is the elimination 
of toxic compounds from the environment by 
speeding up the normal metabolism of 
bacteria, fungi, algae, plants (or endogenous 
enzymes) to transform pollutants into less 
toxic compounds such as carbon dioxide 
(CO2), water, inorganic salts, microbial 
biomass, and other by-products (commonly, 
secondary metabolites) (Kumar et al., 2018). 
There are two main strategies in 
bioremediation: biostimulation and 
bioaugmentation. The former consists in 
adding or supplementing nutrients and other 
compounds that enrich the polluted zone with 
an ideal pH, water content, oxygen, 
temperature to promote microbial growth and 
metabolism (Kumar et al., 2018; Tyagi et al., 
2011). In bioaugmentation, indigenous or non-
indigenous microorganisms with better 
pollutant degradation capability are added to 
the contaminated site, they can also be 
genetic modified strains with increased 
degradability potential (Kumar et al., 2018). 
However, due to the in situ bioremediation 
progress is directly associated with the 
catabolic potential of the microorganisms 
present and the bioavailability of the 
contaminants, biological treatment processes 
still remains a challenging task (Antizar-
Ladislao et al., 2006; Szulc et al., 2014). 

Most of the bioremediation techniques 
are based on intuition and experience, 
following trial and error experiments (Xu et al., 
2019). These approaches are costly and time 
consuming because the performance 
evaluation of the microorganism is laborious, 
requiring long iterative cycles to obtain a 
desired biodegradability rate.  For instance, 
diesel degradation percentages using 
biostimulation and bioaugmentation were 
lower than with natural attenuation in a study 
lasting 12 weeks (Bento et al., 2005); in 
another study, 57% hexadecane degradation 
took 24 days, reporting around 30 days in 
previous studies (Zhao et al., 2017). In 
addition,  
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addition, bacteria may not respond as 
expected, such as the dramatic CFU (colony 
forming units) decline found in the 
phenanthrene degrading GFP-tagged 
bacterium Novosphingobium sp. LH128 4 
hours after inoculation in soil (Fida et al., 
2017). Overall, this supposes an impediment 
to bioremediation, delaying its application. A 
better understanding of the physiology of the 
bacteria used for this purpose could accelerate 
the application of bioremediation approaches 
(Xu et al., 2019). Biostimulation and 
bioaugmentation techniques require a deep 
understanding of the bacterial metabolism 
(individually and as consortium) and the 
interactions with biotic and abiotic factors (pH, 
water content, oxygen/air availability, 
temperature, carbon sources, etc.). Genome-
scale models (GEMs) are one of the most 
relevant in silico approaches that help 
contextualization of phenotypic behavior of 
microorganisms and represent a valuable tool 
to understand the pollutant degradation 
capability and survival of the bacteria. 

Genome scale models (GEMs) are 
bioinformatic tools that connect genes, 
proteins, and reactions encoded in a genome. 
They give the entire picture of the metabolism 
of an organism allowing for simulation of 
metabolic routes to predict metabolic flux 
changes with Flux Balance Analysis (FBA) and 
other algorithms to optimize the production of 
a metabolites (Fang et al., 2020). Due to the 
increasing availability of genomes and GEMs 
building software the number of GEMs that 
have been reconstructed has augmented, by 
February 2019, 6239 organisms had GEM 
reconstructions (Gu et al., 2019). 

GEMs have proved to be useful in 
bioremediation, several applications 
successfully removed pollutants using model 
and non-model microorganisms, as well as 
individual and community models  (Dhakar et 
al., 2021). The use of non-model and 
environmental microorganisms is a challenge 
in the bioremediation process because there is 
a significant physiological-data gap, and as 
environmental strains respond notably 
different to model strains, the mass production 
yields of bioremediation valuable metabolites 
are deficient. More importantly, GEMs serve 
as tools to obtain better comprehension of the 
physiological response of a given 
microorganism towards different milieu 
conditions to develop cost-effective 

bioremediation procedures that surpass 
current techniques (Ofaim et al., 2020). Here, 
we review and discusses the effectiveness 
and benefits of GEMs applied to the design of 
rational bioremediation strategies using 
individual strains and microbial communities.  

GEMs and their relevance in the study 

of organisms 

GEMs have been used for different 
applications including optimization of 

metabolic pathways for utilization of carbon 

sources such a as glucose, xylose, and acetic 

acid in Escherichia coli iML1515 (Monk et al., 

2017); the genome scale metabolic model of 
Streptomyces coelicolor was analyzed to 

predict growth rate in 62 carbon sources and 

two nitrogen sources identifying essential 

reactions, the model also helped to fill gaps in 

genome annotation (Borodina et al., 2005). 

Eukaryotic models such as Saccharomyces 
cerevisiae GEM Yeast v6.0 are also useful, 

the model was reconstructed with the aim of 

rigorous metabolic examination (Aung et al., 

2013). GEMs have served to carry out studies 

in pathogenic organisms to understand their 

metabolic reactions, for instance, a study 
evaluated antibiotic pressure responses 

using a GEM of Mycobacterium tuberculosis 

(Kavvas et al., 2018); the recent GEM of 

Pseudomonas aeruginosa PA14 includes 

reactions to decipher metabolic mechanisms 
of drug resistance (Dahal & Yang, preprint). 

Furthermore, GEMs are used to improve the 

production of metabolites of interest, for 

example, an enhanced erythromycin 

production was achieved performing 

predictions with the metabolic reconstruction 
of the actinomycete Saccharopolyspora 

erythraea NRRL23338, the authors found 5 

predicted amino acids capable of improve the 

yield, in vitro testing confirmed 4 out of the 5 

amino acids to increase erythromycin titers 
(Licona-Cassani et al., 2012). Moreno-Avitia 

et al. (2020) analyzed the feasibility of 

maximizing the production of phenazine-1-

carboxamide using an experimentally 

validated metabolic reconstruction of 

Pseudomonas chlororaphis ATCC 9446. 
Thus, GEMs allow the metabolic analysis and 

simulation of several organisms of all the 

domains of life under different conditions 

(Table 1); this is one important reason for 

keeping metabolism databases updated.  
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Organism  Model Description  Reference 

Bacteria 

Escherichia coli iML1515 Contains information on 1515 open reading frames, it 
also has some specific contexts, for example iML1515-
ROS version has additional reactions associated with 
the generation of reactive oxygen species.  

(Monk et 
al., 2017) 

Bacillus subtilis iBsu1144 
  
  
 
iYO844  

It was developed by incorporating thermodynamic 
information for the reactions to improve intracellular 
parameters. 
Version that integrates principles of GECKO (GEM with 
Enzymatic Constraints using Kinetic and Omics data) to 
improve the prediction accuracy of central carbon flux. 

(Kocabas 
et al., 2017) 
  
  
(Massaiu et 
al., 2019) 

Mycobacterium 
tuberculosis 

iEK1101 Provides knowledge about the metabolism of this 
pathogenic microorganism and it has been used to 
evaluate responses to antibiotics. 

(Kavvas et 
al., 2018) 

Streptomyces 
coelicolor 

 Metabolic model for improvement of antibiotic yields, 
also used for the annotation of several genes. 

(Borodina 
et al., 2005) 

Saccharopolyspora 
erythraea 

 A model actinomycete for antibiotic production, used for 
erythromycin enhanced synthesis by optimizing the 
metabolic route based on the GEM developed. They 
formulated a medium with glucose and four amino acids 
to obtain high erythromycin yields.   

(Licona-
Cassani et 
al., 2012) 

Pseudomonas 
aeruginosa PA14 

iSD1511 An updated GEM with high accuracy for substrate 
utilization data, strain specific reactions (e.g., phenazine 
transport and redox metabolism, cofactor metabolism, 
carnitine metabolism, oxalate production, etc.) and can 
simulate data in aerobic and anaerobic conditions. 

(Dahal & 
Yang, 
preprint) 

Pseudomonas 
chlororaphis 
ATCC9446 

iMA1267 The first experimentally validated GEM for 
Pseudomonas chlororaphis ATCC9446. Used to 
analyze strategies to maximize PCN production, to 
study the denitrification process and describe the ability 
of the strain to consume several carbon sources. 

(Moreno-
Avitia et al., 
2020) 

Archaea 

Methanosarcina 
acetivorans 

iST807 It has information about the methanogenesis pathway 
of M. acetivorans and represents a useful resource for 
the study of unusual reactions.  

(Peterson 
et al., 2016) 

Eukarya 

Saccharomyces 
cerevisiae 

Yeast 7 Constructed by an international collaborative effort to 
include consensus metabolic networks. The version 
Yeast 7.Fe includes information on iron metabolism.  

(Aung et 
al., 2013) 
 (Dikicioglu 
& Oliver, 
2019) 

Mus musculus   A model that employed genetic tools for data 
extraction, storage and flux simulation that can be used 
as example for developing a model. The model can 
simulate basic growth and metabolic functions. 

(Quek & 
Nielsen, 
2008) 

Caenorhabditis 
elegans 

WormJam The reconstruction involves metabolic compounds 
distributed across four different compartments, cytosol, 
mitochondria, nucleus, and extracellular secretions. 

(Witting et 
al., 2018) 

Arabidopsis thaliana   A model organism for plants that predict accurate 
fluxes, and it considers the transport costs associated 
with nutrient uptake and protein translocation between 
organelles. 

(Cheung et 
al., 2013)  

Homo sapiens  Recon3D 
  
 
 
iAdipocytes1809 

It has GPR associations and structural information on 
metabolites and enzymes. It is the latest version of a 
Homo sapiens GEM. 
An adipocyte-based metabolic reconstruction. Contains 
information on subcellular localization and tissue 
specific gene expression based on the Human Protein 
Atlas database.  

(Brunk et 
al., 2018) 
  
 
(Mardinoglu 
et al., 2013) 

Table 1. Examples of organisms with a reported genome-scale model (GEM) 
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Metabolic reconstruction approaches. 

Reconstruction of GEMs complexity 

varies depending on the approach followed 

and the use of software, however it is a 

laborious work, it involves many hours of 

database research, coding, and manual 

curation. The average time required for the 

reconstruction of a GEM goes from 6 months 

to two years, conditioned to the genomic size 

and study status of the bacteria (Thiele & 

Palsson, 2010). There are two main 

approaches to reconstruct GEMs, bottom-up 

and top-down. The former consists in building 

the model from scratch, and the latter in 

constructing it from an already made 

universal model. Some software, such as 

CarveMe, use the top-down strategy, 

providing a draft model in short time; 

nevertheless, most software employ the 

bottom-up strategy, requiring more manual 

curation (Machado et al., 2018; Mendoza et 

al., 2019). Both approaches need an 

annotated high quality genome as starting 

material. In the traditional or bottom-up 

strategy, the annotation is input in a software 

that automatically generates a draft model by 

comparing reactions databases and the 

annotated genome (by homology or 

orthology) (Machado et al., 2018). Then, the 

user manually cures the draft to obtain the 

final model. 

Top-down strategy is usually faster, 

the whole process is described somewhere 

else (Machado et al., 2018), briefly, a universal 

model is created by integrating all models 

available in a database, namely BiGG, then it 

is manually curated. This universal model 

serves as a template for the new model; 

hence, the annotated genome of a given 

organism is compared to the universal model 

by orthology/homology using a software, 

during this process reactions present in the 

organism are included (together with 

metabolites) in the model, the unnecessary 

reactions are removed. The output is a 

functional curated model; however, further 

manual curation is needed. A key step in the 

reconstruction process is the correct 

establishment of orthology and homology, it is 

of utmost importance to take in consideration 

the precise selection of related and reference 

strains, particularly when working with 

environmental strains. The quantity and 

quality of information found in reaction 

databases relies mostly in this step (Thiele & 

Palsson, 2010). Manual curation also 

depends on the collected data; in cases 

where there is not enough information of a 

given organism, physiological and 

experimental data have to be compared with 

model reconstruction to ensure model 

accuracy (Thiele & Palsson, 2010). 

GEMs are constantly growing and 

evolving as new data for the given organism is 

available. Though metabolic models do not 

cover the whole metabolism, predictions 

obtained are helpful approaches and 

guidelines to design rational strategies that are 

more efficient, reliable, and accurate than trial 

and error scheme. In the case of 

environmental strains, metabolic models give 

a powerful insight to make conscious 

decisions. 

Genome scale metabolic modeling to 

improve bioremediation using individual 

species 

Several studies have successfully 

used GEMs for biostimulation and 

bioaugmentation. As of January 2013, only 

seven species including Acinetobacter baylyi, 

Dehalococcoides ethenogenes, Geobacter 

metallireducens, G. sulfurreducens, 

Pseudomonas putida, Rhodococcus 

erythropolis, and Shewanella oneidensis and 

nine GEMs were constructed for 

bioremediation applications, these are 

discussed in another review (Xu et al., 2013). 

To date, the number of GEMs applications in 

bioremediation is growing and more interest is 

being put in them as they show high efficacy.  

GEMs can be reconstructed for 

individual strains and microbial communities, 

most GEMs in bioremediation are for individual 

strains, moreover they are mainly used for 

biostimulation purposes due to the challenges 

bioaugmentation imply; these, along with 

microbial community GEMs, will be further 

discussed. They are helpful in non-model and 

environmental organisms, such as 

Paenarthrobacter aurescens; Ofaim and 

collaborators reconstructed a metabolic model 

of the TC1 strain to study the degradation of 

the pollutant herbicide atrazine with 100 

different compounds to supplement the 



 

BioTecnología, Año 2021, Vol. 25 No.3       15 

 

medium Ofaim et al. (2020). They found the 

optimal combination of compounds to enhance 

degradation, further tested the predictions in 

vitro and confirmed them, highlighting the 

importance of GEMs to capture complexities 

that go beyond biochemical knowledge and to 

screen hundreds to thousands of compounds 

with no cost. In another study, a reconstruction 

of a toluene-degrader strain Pseudomonas 

veronii 1YdBTEX2 was reported. P. veronii is a 

bacterium used in bioaugmentation, the GEM 

reported included REMI (Relative Expression 

and Metabolomics Integrations), a method to 

integrate omics data into metabolic models and 

specific-context models, to predict the growth of 

the strain during transition from exponential to 

stationary phase and adaptation from liquid 

medium to sand (Hadadi et al., 2020). The 

optimization of microbial activity of Variovorax 

sp. SRS 16 through simulation of linuron 

degradation outcomes under several conditions 

was performed reconstructing a GEM (Dhakar 

et al., 2021). Ralstonia eutropha H16 GEM 

RehMBEL1391 was reconstructed to analyze 

its metabolic capacities, the strain is able of 

degrading several aromatic compounds (Park 

et al., 2011). 

Model organisms such as, E. coli str. 

K-12 substr. MG1655 and Pseudomonas 

putida KT2440 have been used in 

bioaugmentation. Iman and colaborators used 

the E. coli GEM iJO1366 to study the 

degradation of 2,4,6-trinitrotoluene (TNT) and 

to design mutant strains with higher TNT 

degradation yields than wild type strain (Iman 

et al. 2017). Pseudomonas putida KT2440 is a 

non-pathogenic soil bacterium with the 

metabolic capacity of degrading toluene, lignin 

and other xenobiotics. The first GEM iJN746 

and the most recent and curated iJN1462 

model have been used to analyze the 

biodegradability of such contaminants as well 

as the strain potential as a biofactory to 

produce polyhydroxyalkanoate (PHA) 

(Nogales et al., 2008, 2020). 

Microbial communities engineering 

strategies to enhance bioremediation 

methods 

As mentioned earlier, micro-

environmental conditions are a key factor to be 

considered for the design of bioremediation 

strategies. There is a lack of information about 

how the inoculated bacteria will be affected by 

the new environmental conditions. In other 

words, an engineered strain may not behave 

similarly under laboratory compared to real 

environmental non-controlled conditions 

causing physiological stress and decreasing 

its performance. The results are mixed and the 

inoculation goals are commonly not achieved; 

inoculated bacteria may not survive or express 

the desired metabolic activity (Morales et al., 

2021). Therefore, bioaugmentation techniques 

are commonly accompanied by biostimulation 

to aid during the adaptation stage and 

increase the pollutant removal, these include 

the use of a microbial community or nutrients 

(Nikolopoulou et al., 2013).  

In nature, microorganisms coexist 

taking advantage of their produced 

metabolites and interchanging nutrients. Thus, 

in bioaugmentation methods it is important to 

study the interaction of the inoculated bacteria 

with the indigenous bacteria to increase the 

efficacy of the technique. Studying the 

metabolism of the microbial community by 

performing enzymatic tests and growth curves 

in different media in vitro could be time and 

money consuming. Microbial communities 

metabolic modeling represents an approach 

that has allowed to know which reactions are 

relevant to drive  microbial interactions within 

specific environments. For example, the 

context-specific metabolic reconstruction of 

two communities present in polyaromatic 

contaminated soil allowed the analysis of 

naphthalene degradation with and without 

biostimulation, these results can aid in the 

development of better bioremediation 

strategies (Tobalina et al., 2015). A possible 

outcome of studying microbial communities is 

the design of synthetic consortia. 

Synthetic consortia are constructed 

through microbial community engineering, 

which allows the accomplishment of highly 

complex tasks that pose a challenge for 

monocultures (Tsoi et al., 2019). Genome-

scale metabolic modeling has proved to be a 

successful tool to design synthetic 

communities with applications in 

bioremediation. For example, a study 

reconstructed GEMs of the atrazine-degrading 

bacterium Arthrobacter aurescens TC1 

(Paenarthrobacter aurescens TC1) and other 

four non-atrazine degrading soil bacteria to 
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analyze the community interactions (Xu et al., 

2019). In this study, the model was used to 

predict community performances considering 

growth, atrazine degradation, and specific 

exchange fluxes. The main contribution of 

such simulations was the increase in atrazine-

degrading efficiency by specific interactions of 

a synthetic consortium of Arthrobacter, 

Halobacillus and Halomonas. It was also 

possible to present a model of which 

metabolites are degraded (and used) by the 

community, describing the metabolic 

pathways involved. Zhuang and collaborators 

also studied the bioremediation of uranium 

using community GEMs, they first analyzed 

the competition for nutrients between 

Geobacter sulfurreducens and Rhodoferax 

ferrireducens (two bacteria coexisting in 

uranium polluted sites) in order to explain how 

these interactions may influence in situ 

uranium bioremediation (Zhuang et al., 2011). 

Further, they studied a microbial community 

composed of Geobacter sulfurreducens and 

sulfate-reducing bacteria (SRBs) to design a 

rational strategy for uranium bioremediation, 

they found that the concentration of G. 

sulfurreducens could be kept low with a 

constant supply of acetate and Fe(III) (Zhuang 

et al., 2012). Additionally, (Zomorrodi et al., 

2014) introduced d-OptCom, a tool for the 

dynamic metabolic modeling of microbial 

communities, and designed an improved 

synthetic consortia of Geobacter 

sulfurreducens, Rhodoferax ferrireducens, 

and Shewanella oneidensis to reduce 

uranium; they found an increased uranium 

remediation with the addition of lactate. 

Genome-scale metabolic modeling and 

metabolic engineering for 

bioremediation 

Indigenous bacteria and known 

pollutant degraders can naturally degrade the 

contaminants at their site, however their 

metabolic pathways are not always suitable for 

large scale degradation, decreasing the 

bioremediation efficiency (Dangi et al., 2019). 

The use of improved strains through metabolic 

engineering can solve this problem. Metabolic 

engineering   comprises  the  use  of   already  

 

 

existing metabolic pathways to rewire them, or 

the introduction of exogenous pathways to 

optimize the production of specific metabolites. 

Metabolic engineering requires a detailed 

comprehension of the metabolic pathways of 

the microorganism used, GEMs are a powerful 

tool to design rational strategies. 

GEMs are broadly used in metabolic 

engineering, for instance, predicting gene 

modification strategies to overproduce desired 

compounds accelerating the process, like the 

achieved by metabolic rewiring in 

Pseudomonas putida KT2440 for indigoidine 

production (Banerjee et al., 2020). In the study 

they used the MCS (minimal cut set) to 

determine the targets to enhance the 

production, however, most optimizations are 

performed with FBA and related algorithms like 

OptKnock (Burgard et al., 2003). 

Despite the extended use of GEMs in 

metabolic engineering, the limitations of 

introducing modified strains into natural 

habitats hamper the development of this field 

(Ofaim et al., 2020). Therefore, only few studies 

have reported the use of metabolic engineering 

and GEMs in bioremediation. Izallalen et al. 

(2008) applied the metabolic reconstruction of 

the bacterium Geobacter sulfurreducens to 

predict gene deletions to increase the 

respiration rate using OptKnock. They 

performed the predicted deletions to do 

metabolic engineering in a strain and 

successfully increased the respiration rates and 

diminished the cell growth and biomass yield. 

This engineered strain has applications in 

bioremediation of uranium as it is preferred a 

rapid biodegradation with low biomass. 

Furthermore, the in silico strain design 

of E. coli was possible through the GEM 

iJO1366 to obtain increased 2,4,6-

trinitrotoluene (TNT) degradation rates than the 

wild type strain, the results could be used as a 

future reference for the design of better 

bioremediation techniques (Iman et al., 2017). 

Additionally, other studies pointed out the 

feasibility of using their metabolic 

reconstructions in metabolic engineering to 

improve bioremediation strategies (Aggarwal et 

al., 2011; Sohn et al., 2010). 
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Future directions: The potential use of 

genome-scale metabolic modeling as a 

mean to improve oil spill bioremediation 

Contaminated sites are constantly 

changing as pollutants vary in concentration 

and dispersion over time; some polluted 

zones, such as oil spills move faster due to the 

oceanic currents and wind ( Li et al., 2019), 

therefore response time is crucial to diminish 

the ecological impact. The GEMs applications 

discussed in this review are promising 

approaches to develop enhanced oil spill 

bioremediation strategies.  

The GEM-guided synthetic microbial 

consortia design is particularly interesting 

because of the feasibility of using these 

consortia in different sites. The 

characterization of the autochthonous 

communities living in oil-polluted zones as well 

as oil degraders is essential to develop a 

synthetic consortium that can be applicable to 

different scenarios. The omics era has made 

oil-degrader microorganisms identification 

faster and more accurate. Recent studies 

mention the existence of more than 79 genera 

with petroleum hydrocarbons degradation 

capability, including Pseudomonas, Dietzia, 

Aquamicrobium, Alkanindiges, 

Staphylococcus, Sphingomonas, 

Mycobacterium, Methylobacterium, 

Burkholderia, Achromobacter, Streptobacillus, 

Kocuria, Acinetobacter, Chryseobacterium, 

Marinobacter, Paraburkholderia, Arthrobacter, 

Enterobacter, Streptococcus, Bradyrhizobium, 

Alteromonas, Pandoraea, Leifsonia and 

Rhodococcus, among others (Geng et al., 

2022; Xu et al., 2018). Furthermore, studies 

have analyzed the composition of microbial 

communities present in oil contaminated soil 

(Cai et al., 2020) and water (Neethu et al., 

2019). This information allows for the design of 

synthetic consortia with increased petroleum 

degradation using GEMs to analyze the 

interactions between degraders and non-

degraders. Recently, the GEM-guided design 

of a synthetic consortium composed by 

hexadecane-degrading bacterium Dietzia sp. 

strain DQ12-45-1b and non-degrader 

Pseudomonas stutzeri SLG510A3-8 

successfully removed 85.54% diesel oil in 15 

days (Hu et al., 2020). Using the GEM 

iBH1908,   authors    found    that    P. stutzeri,  

despite not being able of degrading C16 

(hexadecane), could survive using the 

metabolic intermediaries produced by Dietzia 

sp when metabolizing acetate and glutamate 

produced by P.stutzeri.  

Synthetic consortia have 

demonstrated to achieve high bioremediation 

yields, however the combination of synthetic 

consortia from autochthonous bacteria with 

biostimulation is a promising strategy to 

maximize the biodegradation. A study 

analyzed the use of biostimulation (addition of 

KNO3 and KH2PO4, or uric acid and lecithin), a 

pre-adapted indigenous population, and 

rhamnolipids, to degrade spilled oil 

(Nikolopoulou et al., 2013). They mixed the 

variables and found that 3 of the 6 treatments 

showed the best results; seawater + crude oil 

+ KNO3 + KH2PO4 + rhamnolipids + pre-

adapted indigenous population (NPKMR), 

seawater + crude oil + uric acid + lecithin + 

rhamnolipids (ULR), and seawater + crude oil 

+ uric acid + lecithin + rhamnolipids + pre-

adapted indigenous population (ULRM) 

obtained a degradation of 99%, 97% and 88%, 

respectively, within 15 days. 

Additionally, findings by Nikolopoulou 

et al. (2013), serve as a guide for the design of 

bioremediation strategies using GEMs, for 

example, the design of a synthetic consortium 

biostimulated with biosurfactants, such as 

rhamnolipids. Biosurfactants have attracted 

some research groups for bioremediation 

because the amphiphilic nature of these 

compounds, promoting the partitioning of the 

hydrophobic contaminants into internal cores 

of micelles and detaching the pollutants to the 

sediments and increase their bioavailability 

(Dell’ Anno et al., 2021). Biosurfactants have 

advantages such as being environmentally 

friendly, with reduced toxicity and high 

biodegradability compared to chemical 

surfactants (Mnif et al., 2017). For instance, 

rhamnolipids are the most studied 

biosurfactants, they are glycolipids that consist 

in a β-hydroxy (3-hydroxy) fatty acid 

glycosylated with either one or two rhamnose 

residues (mono- and di-rhamnolipids, 

respectively) produced by some 

Pseudomonas species (Thomas et al., 2021; 

Varjani & Upasani, 2017). Several studies 

show the efficacy of rhamnolipids in the 

removal of hydrocarbon pollutants. A diesel 
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degradation yield of 70% was achieved by the 

rhamnolipids produced by Pseudomonas 

aeruginosa AHV-KH10 (Pourfadakari et al., 

2021). Another study reports removal of up to 

80% petroleum hydrocarbons using a mixture 

of rhamnolipids, biochar and nitrogen (Wei et 

al. 2020). Thomas and collaborators found that 

rhamnolipids have similar capacity as 

chemical surfactants (Superdispersant 25, 

Finasol OSR 52, and Slickgone NS) to remove 

hydrocarbons (Thomas et al. 2021). 

Despite rhamnolipids are the 

biosurfactants with higher yields, their 

commercialization and applications are 

limited due to the low level of production of 

Pseudomonas strains (Soberón‐Chávez et 

al., 2021). Several studies have achieved 

increased production of rhamnolipids by 

metabolic engineering, utilization of different 

substrates and culture media. Nonetheless, 

results are far from achieving process 

economic feasibility - for a more detailed 

insight of these studies check the review by 

Soberón-Chávez and collaborators 

(Soberón‐Chávez et al. 2021). Recently, the 

use of pyocyanin, a blue pigment exclusively 

produced by Pseudomonas strains, was 

found to assist rhamnolipids emulsification of 

petrol, hexadecane and diesel (Das & Ma, 

2013). They observed that strains with higher 

production of pyocyanin increased 

hydrocarbon emulsification. While tests 

were performed using cell-free 

supernatants, the results may indicate the 

role of pyocyanin as an enhancer of the 

emulsification by rhamnolipids (Das & Ma, 

2013). This poses the opportunity of using 

GEM for the fine tuning of the biosynthesis 

of an optimal ratio of rhamnolipids and 

pyocyanin to use them as biostimulators 

(Gonçalves & Vasconcelos, 2021). 

The use of pyocyanin and 

rhamnolipids for bioremediation is 

complicated because of the complexity of 

their metabolic routes, they derive and 

intersect from central metabolism pathways; 

moreover, Pseudomonas possesses an 

elaborated quorum sensing (QS) system in 

which both metabolites are involved 

(Soberón‐Chávez et al., 2021). As a future 

perspective, GEMs can overcome the 

problems discussed and furthermore, be 

used to design an improved synthetic 

consortium of hydrocarbon degraders 

biostimulated with rhamnolipids and 

pyocyanin to speed up oil removal. The 

metabolic reconstruction of a non-virulent 

Pseudomonas aeruginosa strain with 

optimized pyocyanin and rhamnolipids co-

production could guide the metabolic 

engineering strategies to solve the problems 

metabolic pathways suppose. However, the 

modeling of quorum sensing is more difficult, 

at the moment of writing this review, few 

attempts have been done to incorporate 

regulation systems (Chung et al., 2021) and 

quorum sensing pathways into GEMs (Botero 

et al., 2020); hence, similar strategies could 

be followed to obtain a well-nurtured GEM. 

This system of oil bioremediation can be 

designed to be universally applicable. 

Further research is needed to extend 

the applications of GEMs and to overcome 

current limitations, such as viability, cellular 

regulation, genetic engineering, among 

others. Withal, GEMs have a plethora of 

advantages and applications, their versatility, 

as one reconstruction can be reutilized for 

different purposes, increases the possible 

outcomes, and allows the simulation of 

thousands of scenarios, making them a great 

tool to improve bioremediation. 
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