

XX Congreso Nacional de Biotecnología y Bioingeniería

11-15 de septiembre del 2023. Ixtapa Zihuatanejo, Guerrero

EVALUACIÓN DE LAS PROPIEDADES FISICOQUÍMICAS Y ESTRUCTURALES DE LEGUMINOSAS MEXICANAS: HARINAS DE FIBRA DE GUAMÚCHIL Y DE MEZQUITE

Dalia Samanta Aguilar Ávila¹, Alba Rossana Rodríguez Gutiérrez², Rocío Ivette López Roa¹, Alma Hortensia Martínez Preciado¹, Juan Manuel Viveros Paredes¹ Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI). Universidad de Guadalajara. Laboratorio de Ingeniería y Biotecnología de los Alimentos. Laboratorio de Investigación y Desarrollo Farmacéutico, Guadalajara, Jalisco, C.P. 44430, ²Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara. Guadalajara, Jalisco. C.P. 44340. samanta.aguilar@alumnos.udg.mx

Palabras clave: alimento funcional, fibra dietética, harina prebiótica

Introducción. El mezquite y el quamúchil son árboles que pertenecen a la familia Leguminosae. El mezquite se encuentra en zonas áridas y/o semiáridas de México y su fruto entero contiene entre 11 – 17 % de proteína y 13 – 34 % de azúcares1. El guamúchil presenta entre 5.83 - 6.12 % de fibra dietética, de la cual el 4 -5 % corresponde a fibra soluble y cuenta con la presencia de antioxidantes como el ácido gálico, ácido mandélico, quercetina, entre otros². La caracterización química y física de harinas involucra la evaluación propiedades químicas, morfológicas, tamaño partícula y reológicas, las cuales brindan información sobre su estabilidad y control de calidad. Por esta razón, se buscó el evaluar las propiedades químicas, físicas y morfológicas de harinas provenientes de leguminosas mexicanas como la fibra de guamúchil y de mezquite.

Metodología. Las vainas de guamúchil y mezquite se obtuvieron de Autlán de Navarro y Mexticacán Jalisco. respectivamente. Las vainas se deshidrataron a 60°C por 4 días, se molieron y tamizaron. Se determinó el contenido de humedad mediante la técnica establecida por la AOAC y la determinación de color de las harinas se evaluó mediante un colorímetro de la marca BELEY 8 mm, identificando los parámetros L, a y b. Se determinó la viscosidad mediante un viscosímetro de Brookfield (DV1). Se utilizó el Microscopio Electrónico de Barrido (MEB) EVO 18, ZEISS, Germany a 15 KV. Las micrografías se procesaron con el software ImageJ para obtener el tamaño de partícula. Los datos están representados como la media de tres repeticiones ± desviación estándar. Se realizó una t-student para determinar diferencias entre grupos. Se evaluaron las diferencias significativas mediante el software estadístico GraphPad 8.0.

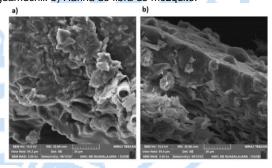

Resultados. En la Tabla 1. Se muestran los datos obtenidos de las propiedades físicas, químicas y estructurales de la fibra de guamúchil y de mezquite. El guamúchil presentó una mayor luminosidad (L) (74.31 \pm 1.00) con respecto al mezquite (68.85 \pm 1.9 En la

Figura 1. Se muestran las micrografías de las harinas de guamúchil y de mezquite a 2000x. Se observó una superficie heterogénea, con la presencia de algunos poros.

Tabla 1. Propiedades químicas, físicas y reológicas de las harinas de fibra de guamúchil y de mezquite.

	Guamúchil	Mezquite
L	74.3 ± 1	68.8 ± 1.9
а	7.8 ± 0.2	6.9 ± 0.7
b	16.6 ± 0.3	10.5 ± 1.6
Viscosidad	8.0 ± 1.0 cP	6.0 ± 0.0 cP
Humedad	16.5 %	15.0 %

Fig. 1. Micrografías obtenidas del MEB a 2000x. a) Harina de fibra de guamúchil. b) Harina de fibra de mezquite.

Conclusiones. Ambas harinas muestran características importantes para considerarlas un alimento funcional con uso potencial en el desarrollo de alimentos prebióticos.

Agradecimiento. CONACYT y UDG.

Bibliografía.

- Prokopiuk D, Martínez N, Amparo A, Cruz G. (2010). Int J Food Props. 13 (4): 692 – 701.
- Pío J, Díaz S, Montes J, López G, delgado F. (2013). Fruits. 68: 397 – 408.