

XX Congreso Nacional de Biotecnología y Bioingeniería

11-15 de septiembre del 2023. Ixtapa Zihuatanejo, Guerrero

ACTIVIDAD ANTIOXIDANTE DEL ACEITE ESENCIAL DE ORÉGANO Y SU COMPONENTE MAYORITARIO EL CARVACROL PARA SU POTENCIAL APLICACIÓN EN PRODUCTOS CÁRNICOS

Ana Sofía Galindo Salinas¹, Rocío Álvarez Román², Nancy Nallely Espinosa Carranza¹, Sergio Arturo Galindo Rodríguez¹, ¹Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, 66455, ²Universidad Autónoma de Nuevo León, Facultad de Medicina, Monterrey, 64460, ana.galindosIns@uanl.edu.mx

Palabras clave: antioxidante, aceites esenciales, carvacrol

Introducción. Diversos alimentos, como la carne se ven afectados en sus propiedades organolépticas por la oxidación de sus componentes, la cual es causada por los radicales libres (RL). Estas especies pueden desencadenar cambios en los ácidos grasos de la carne provocando pudrición del producto y oxidación de la mioglobina (1). Su presencia causa una coloración oscura y endurecimiento, lo que se conoce como carnes DFD (Dark, Firm, Dry). Por lo que, la industria alimentaria ve la importancia de encontrar nuevos compuestos que reduzcan la formación de RL. Los aceites esenciales (AE), considerados sustancias GRAS, han recibido interés científico por su amplia variedad de aplicaciones biológicas, entre ellas sus propiedades antioxidantes. Por esto, el AE de orégano (AEO) y su componente mayoritario el carvacrol (CRV) han sido propuestos como conservadores naturales dentro de la industria cárnica.

El objetivo de este trabajo fue determinar la capacidad antioxidante *in vitro* del AEO y su componente mayoritario el CRV mediante los ensayos de ABTS⁺ y DPPH.

Metodología. Se realizaron ensayos de ABTS+ (2) y DPPH (3) para determinar la actividad antioxidante del AEO, CRV y Trolox, como control positivo. Para el AEO, en el ensayo de ABTS+ se utilizaron concentraciones de 15 – 400 μg/mL, mientras que, en el ensayo de DPPH se utilizaron concentraciones de 10 – 400 μg/mL. En cuanto al CRV, en el ensayo de ABTS+, se utilizaron concentraciones de 1 – 20 μg/mL y para el ensayo de DPPH, se utilizaron concentraciones de 20 - 800 µg/mL. Se midió la absorbancia a una λ = 734 nm para ABTS+ y λ = 534 nm para DPPH empleando un espectrofotómetro UV-Vis. Mediante un análisis probit (IRMA Qcal versión 0.02) se calculó la IC₅₀, representando el 50% de inhibición de las concentraciones evaluadas del AEO, CRV y Trolox, en cada uno de los ensayos.

Resultados. En la Tabla 1 se muestran los valores de IC₅₀ y coeficiente de correlación (r²) obtenidos en el ensayo de ABTS⁺. En la Tabla 2 se muestran los valores de IC₅₀ y r² obtenidos en el ensayo de DPPH.

Tabla 1. Valores de IC_{50} de AEO, CRV y Trolox por el ensayo ABTS $^+$.

Compuesto	IC ₅₀ (μg/mL)	r²
AEO	193.79 ± 13.56	0.9901
CRV	4.76 ± 0.07	0.9768
Trolox	163.97 ± 8.77	0.9999

Tabla 2. Valores de IC_{50} de AEO, CRV y Trolox por el ensayo DPPH.

Compuesto	IC ₅₀ (μg/mL)	r²
AEO	110.25 ± 4.47	0.9387
CRV	183.79 ± 3.74	0.9926
Trolox	9.18 ± 0.57	0.9995

Conclusiones. El AEO y su componente mayoritario el CRV presenta la actividad antioxidante adecuada para su potencial aplicación como conservador de productos cárnicos.

Agradecimientos. Al PAICYT, UANL, 2023.

Bibliografía.

- González P, Chauhan S, Ha M, Fegan N, Dunshea F. (2020). Effects of heat stress on animal physiolohy metabolism, and meat quality. Meat Science.
- Amiri H. (2012). Essential oils composition and antioxidant properties of three *Thymus* Species. *Evidence-Based* Complementary and Alternative Medicine.
- Benchabane Ö, Hazzit M, Baaliouamer A, Mouhouche F. (2015). Analysis and antioxidant activity of the essential oils of Ferula vesceritensis coss. et. Dur and Thymus munbyanus Desf. Journal Essential Oil-Bearing Plants, 15(5): 774 – 781.