OBTENCIÓN DE UN PROBIÓTICO DE BIFODOBACTERIAS UTILIZANDO COMO BASE AGUAMIEL

Roberto Campos Mendiola, Rosalva Mora Escobedo, Humberto Hernádez Sánchez,. Departamento de Graduados e Investigación en Alimentos. Escuela Nacional de Ciencias Biológicas IPN Carpio y Plan de Ayala Col. Sto. Tomás, C.P. 11340, tel.57296000 ext. 62458 fax 62359 E.mail rosalmora@hotmail.com

Palabras clave: Probiótico, viabilidad

Introducción. Las bifidobacterias adicionadas a la dieta del ser humano suelen producir beneficios a la salud a través de varios mecanismos como la inhibición y desplazamiento de la flora patógena (1). El mantenimiento de la viabilidad requiere de medios con una fuente de carbono, una fuente de nitrógeno y algunas vitaminas como la riboflavina. Entre las fuentes de carbono que mejor utilizan las bifidobacterias destacan la fructosa, la glucosa, la sacarosa (3).

El aguamiel es un fluido obtenido del *Agave Atrovirens Karb* o Agave manso, este fluido contiene una gran cantidad de carbohidratos destacando entre ellos la sacarosa y oligofructosacaridos (2). Además el aguamiel contiene una pequeña cantidad de aminoácidos y algunas vitaminas por eso este líquido puede ser un medio para formular un probiótico.

El objetivo de este trabajo es obtener un producto de bifidobacterias viables sobre aguamiel.

Metodología. Se caracterizó el aguamiel en % de humedad, grados Brix, pH, y % de acidez de muestras obtenidas de cultivos de Agave en el municipio de Contepec, Michoácan. Se determinó el contenido de carbohidratos por el método colorimetrico de Ting (4) y se correlacionó con los resultados obtenidos por HPLC. En algunas de las muestras de aguamiel se probó el crecimiento de *Bifidobacterium bifidum, B. longum, B. animali* a 37°C. y se determinó la viabilidad a 4°C en aguamiel de *B. animalis* utilizando un tamaño de inoculo de 10⁸ UFC/ml obtenido por turbidez a 590 nm en medio de cultivo TPY líquido, y con conteo de colonias en placa en TPY sólido.

Resultados y Discusión. Las muestras de aguamiel estudiadas presentaron un variación en el contenido de humedad de 83 a 89% y grados Brix entre 8.9 y 11.8, el pH varió desde 5.7 hasta 8.3 con acidez de 0.25 a 2.25%-Respecto al contenido de azúcares el método de determinación utilizando HPLC muestra que la sacarosa es el carbohidrato más abundante y también se encuentran menores cantidades de fructosa libre varia entre 5.6 y 19.2 g/L y el glucosa libre entre 3.4 y 14.6 g/L mientras la fructosa ligada varia de 32.3 a 59 g/L y la glucosa de 44.5 a 71 g/L En aguamiel natural *B. bifidum*, *B. longum y B.anilalis* presentaron un crecimiento a 37°C

alcanzando su máximo nivel a las 48 h. El aguamiel inoculado con *B. aminalis* perdió la viabilidad rápidamente y sólo fue posible mantenerla cuando éste se diluyó. La viabilidad se conservó a 8.5 y 9.6 grados Brix, como lo muestra el siguiente cuadro.

Viabilidad de *B. animalis* en aguamiel a 4°C determinada a los 31 días de incubación

Grados Brix	pН	% de perdida de
		la viabilidad
		funcional
11.8	6.1	No hay viabilidad
9.6	6.1	6.2
8.5	6.1	5.2
9.6	6.9	9.6
8.5	6.9	7.6

La viabilidad funcional se considera como una concentración de bifidobacterias por encima de 10^6 UFC/ml es decir la perdida de viabilidad no debe ser mayor de 25%.

Conclusiones. Utilizando aguamiel diluído como sustrato y dentro de un intervalo de grados Brix de 8.5 a 9.6 e independientemente del pH que se reporta como óptimo para el crecimiento de bifidobacterias se logró hacer crecer y mantener viable por más de 20 días a *B. animalis*.

Bibliografía

- 1. Gibson, G.R., y X. Wang (1994). Regulatory Effects of Bifidobacteria on the Growth of other Colonic Bacteria. J.Appl. Bacteriol. 77: 412-420
- 2. Martinez del Campo-Padilla, M.G. (1999). Determinación, cuantificación e hidrólisis de inulina en el aguamiel de agave pulquero "Agave atrovirens". Tesis. Facultad de Química. UNAM. México D.F.
- 3. Scardovi V.: en Sneath, P.H.A., Mair S.N. Sharpe E. M., Holt, G:J. 1986 Bergey's Manual of Systematic Bacteriology. Vol2 Ed. Williams and Wilkins Baltimore
- 4. Ting S:V. (1956) Rapid Colorimetric Methods for Simultaneus Determination of Total Reducing Sugars and Fructose in Citrus Juices. J. Agric. Food Chem. 4(3) 263-266

FORMATO DE PRESENTACION DE TRABAJOS