CUANTIFICACIÓN DE UNA POBLACIÓN AUTOTROFA/HETEROTROFA QUE OXIDA TIOSULFATO EN PRESENCIA DE COMPUESTOS AROMÁTICOS

Ana Muñoz-Colunga, Luis Torres-Bustillo, Luis Bautista y Elías Razo-Flores Instituto Mexicano del Petróleo. Programa de Biotecnología. Eje Central L. Cárdenas 152. Col. San Bartolo Atepehuacan. México D.F. 07730. Tel: 53 33 72 38 e-mail: acolunga@imp.mx

Palabras clave: Thiobacillus, autótrofo/heterórotrofo, tiosulfato

Introducción. La refinación de crudo genera corrientes con tres principales compuestos: reducidos de azufre (CRA), nitrogenados y aromáticos, los cuales deben ser removidos previa descarga o disposición final (incluido el reuso). La oxidación biológica de CRA es una buena alternativa de tratamiento. El éxito del proceso se basa en el metabolismo aerobio y autótrofo de bacterias del genero *Thiobacillus*. Este trabajo pretende conocer la composición autótrofa y heterótrofa de un consorcio que oxida ${\rm QO_3}^=$. Así como el efecto de aromáticos sobre su capacidad de biooxidación.

Metodología. Se realizaron pruebas en microcosmos donde se utilizó un consorcio, adaptado a oxidar S₂O₃⁼, compuesto de levaduras, hongos y bacterias (autótrofas y heterótrofas)1. Tomando en cuenta que la oxidación de S₂O₃⁼ se caracteriza por disminución de pH, producción de SO₄ y aumento de proteínas estos parámetros fueron determinados al inicio y fin de todos los experimentos. La población de autótrofos y heterótrofos se determinó por el método de dilución en placa, La dilución fue 1E⁻⁶ y la siembra por duplicado; las cajas se incubaron a 30°C y una vez que se observó desarrollo de colonias se realizó el conteo como UFC/mL. Para crecimiento de autótrofos se utilizó medio Sublette¹ y goma gellan y para heterótrofos extracto de levadura, peptona de caseina, glucosa y agar 10 g/l cada uno. La tinción de Gram se realizó en algunas colonias autótrofas y heterótrofas. La población provino de frascos que contenían fenol, benceno o tolueno (6 diferentes concentraciones cada uno) y $S_2O_3^{=}$.

Resultados y discusión. La actividad microbiana se evaluó con base en el pH, y por ciento de los cocientes SO₄/SO₄ control y proteína/proteína control. En la tabla 1 se observa que en todos los experimentos se produjo SO₄ generalmente con valores inferiores al control. La proteína también aumentó, alcanzó valores superiores al control y tiende a disminuir con el incremento de concentración de aromáticos

Tabla 1. Comportamiento de SO_4^- y proteína en presencia de aromáticos y $S_2O_3^-$ como fuente de energía. Todas las columnas en %, El valor del control es 100 %.(c) es control..

Con (mg/L)	fenol		benceno		tolueno	
	SO4/SO4c	prot/protc	SO4/SO4c	prot/protc	SO4/SO4c	prot/prote
10	98.91	165.87	122.5	110.15	97.58	129.75
20	100	127.79	87.02	91.53	101.09	99.42
50	93.46	113.45	87.72	76.29	nsd	98.95
100	102.2	94.16	90.84	101.25	93.63	100
150	96.27	86.84	92.75	84.32	99.89	81.98
200	104.9	92.68	119.6	90.67	132.92	105.31

No se detectó una relación directa entre SO_4^- y proteína. En lo que respecta al pH éste disminuyó, lo cual corresponde con la respuesta característica de biooxidación. Con base en lo expuesto podemos afirmar que el consorcio fue capaz de crecer y oxidar $S_2O_3^-$ en presencia de los aromáticos y concentraciones probadas

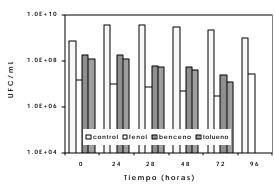


Fig 1. Comportamiento de la biocenosis autótrofa en presencia de aromáticos en la concentración de 100 mg/L y tiosulfato.

Respecto de la composición bacteriana autótrofa en la figura 1 se observa un crecimiento máximo, en el control, después de 24 h, que los aromáticos causan un efecto negativo (benceno, tolueno y fenol en orden decreciente) sobre la UFC/mL y que la población tiende a disminuir en todos los experimentos. El cociente promedio autótrofo/heterótrofo fue 28, 0.46 y 0.3 para benceno, tolueno y fenol, respectivamente. Los valores más bajos de UFC/mL se obtuvieron en las pruebas con fenol es posible que la actividad heterótrofa y mixotrofa haya sido más rápida y en mayor proporción respecto de benceno y tolueno. No se observó crecimiento de autótrofos en medio sin $S_2O_3^-$ y con aromáticos y en el caso de heterótrofos el desarrollo de colonias fue incontable. Se identificaron bacterias en forma de bacilos cortos y gram-negativas en todas las colonias (autótrofas o heterótrofas).

Conclusiones. El consorcio si oxida tiosulfato en presencia de fenol, benceno y tolueno. En un sistema con tiosulfato y aromáticos la relación autótrofo/heterótrofo no tiene un comportamiento definido.

Agradecimientos. El consorcio fue proporcionado por Dr. S. Revah (UAM-I). Proyecto IMP-PIMAS-PBP D.00021.

Bibliografía. 1. Alcántara, S. Estrada, I. Váquez, S. and Revah S. (1999) Carbon disulfide oxidation by a microbial consortium from a trickling filter. Biotechnology Letters 21, 815-819

.2. Bos P. y A. Robertson (1997) Microbiology of sulphur removal. Ph.D. dissertation. Delft University of Technology. The Netherlands.