

XIV Congreso Nacional de Biotecnología y Bioingeniería

ACTIVIDAD METANOGENICA Y REDUCTORA DE HUMUS DE UN LODO ANAEROBIO EN PRESENCIA DE NANOPARTÍCULAS DE γ-AI₂O₃

Luis H. Alvarez; Claudia M. Martínez; Francisco J. Cervantes

División de Ciencias Ambientales. Instituto Potosino de Investigación Científica y Tecnológica. Camino a la Presa 2055 Col. Lomas 4 sección CP 78216. San Luis Potosí, SLP, México. luis.alvarez@ipicyt.edu.mx

Palabras clave: Ácidos Húmicos, Nanopartículas, Lodo Granular.

Introducción. La inmovilización de mediadores redox (MR) para la biotransformación de contaminantes prioritarios es una tarea actualmente en proceso, encaminada a evitar su adición continua en reactores anaerobios. MR como quinonas modelo han sido inmovilizados en nanopartículas (NP) de Al(OH)₃ (1). Las NP funcionalizadas pueden ser utilizadas para coinmovilizar MR y microorganismos reductores del humus (MRH) durante la formación de lodo granular (Fig. 1). Objetivo: evaluar el efecto de NP-γ-Al₂O₃ (NP-Al) sobre la actividad metanogénica específica (AME) y reductora de humus (ARH) de un lodo anaerobio.

Metodología. Se realizaron pruebas en lote para evaluar la AME y ARH de un lodo anaerobio disgregado (1 g SSV L⁻¹), bajo condiciones anaerobias. Las NP-AI con y sin ácidos húmicos (AH) adsorbidos fueron utilizadas en distintas concentraciones. Los sustratos fueron glucosa, acetato e hidrógeno. El metano se midió por cromatografía y la reducción de SH por el método de la ferrozina(2).

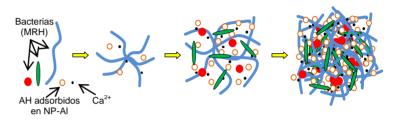

Resultados. En la Tabla 1 se observa que al aumentar la concentración de NP-Al disminuye la AME cuando se utiliza glucosa y acetato. La Fig. 2 muestra la actividad del lodo utilizando acetato en exceso a fin de que la AME y ARH no se limite por disponibilidad de sustrato, debido a la adsorción sobre las NP-Al. Los resultados indican que las NP-Al con y sin AH inmovilizados afectan la AME; sin embargo, ésta no se inhibe por completo y se vuelve estable. El consorcio mostró una mayor ARH con AH inmovilizados en NP-Al, comparado con el control con AH estaban solubles (Fig. 2-B).

Tabla 1. AME del lodo anaerobio en presencia de NP-Al y distintos sustratos a 1 g DQO L⁻¹. Se muestra el valor de AME seguido de R².

NP-AI (g L ⁻¹)	AME (mg DQO-CH ₄ g SSV ⁻¹ h ⁻¹)		
	Glucosa	Acetato	Hidrógeno
0	0.505 (0.995)	0.416 (0.996)	1.02 (0.978)
25	0.348 (0.994)	0.201 (0.998)	0.894 (0.985)
50	0.297 (0.993)	0.135 (0.998)	0.992 (0.984)
75	0.259 (0.983)	0.094 (0.994)	0.856 (0.982)
100	0.225 (0.979)	0.067 (0.992)	0.937 (0.990)

Conclusiones. Los resultados indican que el consorcio anaerobio es capaz de reducir AH inmovilizados en NP-

Al. Además, los efectos inhibitorios sobre el consorcio no fueron significativos, por lo que su aplicación en sistemas anaerobios es factible.

Fig. 1. Modelo propuesto para la co-inmovilización de MR (adsorbidos en NP-AI) y MRH, durante el proceso de formación de lodo granular.

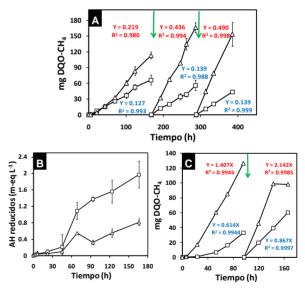


Fig. 2. Actividad del lodo anaerobio en presencia de 100 g L⁻¹ de NP-Al y 7 g DQO L⁻¹ de acetato. Producción de metano en presencia de NP-Al sin (A) y con (C) AH. (B) Actividad reductora de AH. Símbolos: (□) incubación con NP-Al y, según el caso, con AH inmovilizados; (Δ) control sin NP-Al y, según el caso, con AH suspendidos. La concentración de AH fue de ~3.7 g Carbono Orgánico Total L⁻¹.

Agradecimientos. Proyecto SEP-CONACYT 55045 y Lettinga Associates Foundation (Lettinga Award 2007).

Bibliografía.

- Alvarez LH, MA Pérez-Cruz, JR Rangel-Méndez, FJ Cervantes. 2010. J Hazard Mater 184:268–272.
- Lovley DR, JD Coates, EL Blunt-Harris, EJ Phillips, JC Woodward. 1996. Nature 382:445-448.