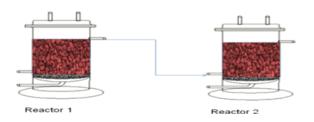


XIV Congreso Nacional de Biotecnología y Bioingeniería



EVALUAR LA CAPACIDAD DE UNA COMUNIDAD BACTERIANA PARA DEGRADAR LAS AMINAS AROMÁTICAS PRODUCIDAS DURANTE LA BIODEGRADACION DE UNA MEZCLA DE AZOCOLORANTES

Cleotilde Juárez Ramírez¹, Merlyn Alejandra Salazar Huerta², Oswaldo Ramos Monroy³, Fortunata Santoyo Tepole, Nora Ruiz Ordaz⁴, Juvencio Galíndez Mayer⁴, Instituto Politecnico, Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Ingeniería Bioquímica, Prolongación de Carpio y Plan de Ayala s/n. CP.11340, México, D.F. cleotildejr@prodigy.net,mx. 1Becario EDI,COFAA, 2Becario PIFI, 3Becario Conacyt, 4Becario EDI, COFAA,SNI Palabras clave: Comunidades microbianas, Biodegradación, Aminas aromáticas, Inmovilización celular

Introducción. Durante la biodegradación de los azocolorantes se producen aminas aromáticas incoloras, generalmente más tóxicas y recalcitrates que el propio colorante¹. En el presente trabajo se presenta el uso de dos comunidades microbianas diferentes para la degradación de la mezcla de los azocorantes orange II² y rojo ácido 88³ y de las aminas 4-amino bencensulfónico (4ABS) y 4-amino naftalen sulfónico (4ANS) productos de la degradación de los mismo, respectivamente, en un sistema continuo de doble etapa con las comunidades microbianas inmovilizadas en roca volcánica

Metodología. El sistema utilizado se muestra en la figura 1|

En el reactor I la comunidad microbiana integrada por las bacterias de los géneros *Pigmentiphaga*, *Kocuria*, *Labrys* y *Curvibacter*, degrada en cultivo continuo la mezcla de los azocolorantes rojo 88 y orange II, generándose en el efluente de este reactor la mezcla de las aminas 4ABS y 4ANS. Este efluente se alimenta al reactor 2, en donde se encuentra inmovilizada la comunidad microbiana integrada por las bacterias de los géneros *Arthrobacter Microbacterium*, *Nocardioides* y *Bacillus* y que es capaz de degradar la mezcla de estas aminas. La cuantificación de los azocolorantes y de las aminas se hizo espectrofotométricamente y por HPLC además de determinar la DQO.

Resultados. En la tabla 1 se observa que durante la biodegradación de la mezcla de los azocolorantes se acumuló preferentemente el 4ANS, producto de la biodegradación del rojo ácido 88 y debido a la

acumulación de esta amina la eficiencia de remoción como DQO fue en promedio del 95%.

Tabla 1. Acumulación de las aminas en función de la carga volumétrica de los azocolorantes

Bv AO7-AR88 (mg/Lh)	4-ABS mg/L	4-ANS mg/L	DQO %
3.6	0.22	7.6	95
4.8	0.22	7.3	95
14.3	0.85	5.5	94
17	1.0	7.0	94
31	0.38	7.6	94
38	0.39	7.6	94

En la tabla 2 se observa que la comunidad inmovilizada en el segundo reactor degrada el 4ANS con eficiencias de remoción del 95%.

Tabla2. Concentración del 4ANS a la entrada y salida del reactor

Bv 4ANS (mg/Lh)	4ANS entrada (mg/L)	4ANS salida (mg/L)	ⁿ (%)
0.16	7	0.29	96
0.75	7	0.31	95.5
1.5	7	0.31	95.5

Conclusiones. El sistema de cultivo continuo en doble etapa permitió la degradación de las aminas producidas durante la biodegradación de la mezcla de los azocolorantes rojo ácido 88 y orange II.

Agradecimientos: al programa PIFI e IPN

Bibliografia:

- 1 Bella T., D. Goyal, S. Khanna, 2009, International Biodeterioration Biodegradation, **63**:462-469
- 2 Chen B., K. Lin, Y. Wang, C. Yi Yen, 2009, J. Hazard. Mater. **166**:187-194.
- 3 Khera M., H. Saini, D. Sharma, B. Chadha, S. Chimni, 2006, Dyes Pigments, **70**:1-7.