

XIV Congreso Nacional de Biotecnología y Bioingeniería

"INFLUENCIA DE LA FUENTE DE FRUCTANOS ADICIONADOS A BIOYOGURT BAJO EN GRASA SOBRE PARÁMETROS FISICOQUÍMICOS Y VIABILIDAD DE BACTERIAS LÁCTICAS"

Idalia Osuna Ruíz*, Jesús Aarón Salazar Leyva, Rosa Stephanie Navarro Peraza y Yazkara Leticia Ramírez Resendiz. *Universidad Politécnica de Sinaloa. Carretera a Higueras Km. 3, CP 82150. Mazatlán, Sin. Tel. (669)1800695 y 696 iosuna@upsin.edu.mx

Palabras clave: Probióticos, Fructanos, yogurt

Introducción. La adición de fructooligosacáridos (FOS) a productos lácteos fermentados afectan la viabilidad de las bacterias acido lácticas (BAL) y el comportamiento fisicoquímico durante el almacenaje en refrigeración. En México, la fuente comercial de mayor importancia para la obtención de FOS o Fructanos es el Agave, estos se emplean como ingrediente los cuales son empleados en la industria de alimentos nacional.

El objetivo de este trabajo fue evaluar la influencia en la viabilidad de BAL y algunos parámetros fisicoquímicos yogurt bajo en grasa (Bioyogurt) cuando se adicionan FOS de distintas fuentes (Agave vs Achicoria).

Metodología. Se elaboraron tres formulaciones de Bioyogurt. Se almacenaron durante 28 días a 4°C. Se determinaron: pH (met. 981.12) y acidez (met. 947.05) (1); Grado de sinéresis (2); Capacidad de Retención de Suero (CRS) (3); Conteos en placa para enumerar a *S. thermophilus*, *Lb. bulgaricus*, *Bifidobacterium ssp.* (4) y *Lb. acidophilus*, (5). Todos a 37°C por 72 h.

Resultados. Se observo un aumento de acidez y una disminución del pH durante el almacenaje (Tabla 1), el menor % de acidez se observo con FOS de agave (1.248). La CRS menor se observó en el control. Mayor grado de sinéresis en la formulación con FOS de agave (0.460 mL/g). Hubo un aumento de la viabilidad de *Lb. bulgaricus* con la adición de FOS de agave en razón de 1.8 respecto a la cantidad inicial; la formulación con inulina conservo mejor la viabilidad de *Bifidobacterium ssp.* (Ver tabla 2).

Conclusiones. Se observó una mejoría en la CRS al final del período de almacenaje con la adición de FOS, independientemente de la fuente. Se observó un comportamiento variable en cuanto a la viabilidad de BAL respecto a la fuente de FOS añadida, favoreciendo a *Lb. bulgaricus* el Agave y a *Bifidobacterium ssp.* la Achicoria. Por lo que se debe continuar con el estudio de estas fuentes para determinar la causa de estas variaciones y aplicar los conocimientos generados en beneficio del consumidor de este tipo de productos.

Tabla 1. Comportamiento de parámetros fisicoquímicos evaluados en Biovogurt almacenado en refrigeración.

Almacenaje a	Formulaciones							
4°C (días)	Parámetro	Control		FOS agave		In	Inulina	
0		5.267	± 0.021	5.190	± 0.046	4.853	± 0.064	
7		5.293	± 0.029	4.607	± 0.214	4.853	± 0.058	
14	pН	4.567	± 0.049	4.373	± 0.015	4.490	± 0.053	
21		4.447	± 0.035	4.467	± 0.045	4.490	± 0.052	
28		4.447	± 0.035	4.467	± 0.035	4.020	± 0.026	
0		0.660	± 0.075	0.756	± 0.036	0.708	± 0.021	
7	Acidez (%)	0.816	± 0.021	0.768	± 0.104	0.816	± 0.110	
14		0.954	± 0.127	0.984	± 0.021	0.924	± 0.104	
21		1.008	±0.108	1.000	± 0.036	1.020	± 0.021	
28		1.020	± 0.055	1.248	± 0.055	1.152	± 0.062	
0		34.80	± 0.18	32.78	± 1.49	33.86	± 0.75	
7	CRS (%)	33.54	± 0.28	35.12	± 0.11	28.53	± 2.44	
14		35.28	± 0.20	34.41	± 0.76	28.04	± 1.08	
21		33.70	± 2.67	31.90	± 2.03	27.74	± 0.04	
28		20.40	± 1.14	24.71	± 0.83	26.00	± 0.02	
О		0.110	± 0.008	0.158	± 0.003	0.005	± 0.001	
7	Sinéresis (mL/g)	0.102	± 0.008	0.211	± 0.005	0.001	± 0.001	
14		0.118	± 0.020	0.240	± 0.001	0.040	± 0.017	
21		0.127	± 0.001	0.300	± 0.002	0.022	± 0.003	
28		0.124	± 0.006	0.470	± 0.014	0.102	± 0.014	

Tabla 2. Viabilidad de bacterias lácticas en Bioyogurt durante su almacenaje en refrigeración.

germane									
Almacenaje a 4°C (días)	Bacteria enumerada	Cuenta viable (log10 UFC/g)							
	bacteria enumerada	Control	FOS agave	Inulina					
0		9.159 ± 0.064	8.561 ± 0.042	9.233 ± 0.014					
7	S. thermophilus	9.133 ± 0.032	8.395 ± 0.052	8.377 ± 0.049					
14	(agar ST)	8.697 ± 0.015	9.147 ± 0.057	8.734 ± 0.062					
21	(ugui 31)	8.877 ± 0.028	8.527 ± 0.055	9.023 ± 0.009					
28		9.193 ± 0.008	8.926 ± 0.025	7.497 ± 0.116					
0		7.441 ± 0.068	4.540 ± 0.088	8.710 ± 0.548					
7	Lb. bulgaricus	6.145 ± 0.035	5.611 ± 0.112	8.816 ± 0.005					
14	(agar MRS)	8.244 ± 0.139	8.883 ± 0.044	8.680 ± 0.051					
21		8.755 ± 0.043	8.311 ± 0.045	7.651 ± 0.068					
28		7.349 ± 0.494	8.071 ± 0.068	8.454 ± 0.032					
0		6.185 ± 0.064	6.19 ± 0.064	5.68 ± 0.135					
7	Bifidobacterium ssp. (agar	5.000 ± 0.001	5.05 ± 0.213	5.46 ± 0.116					
14	MRS-NNLP)	4.312 ± 0.015	5.08 ± 0.001	5.05 ± 0.136					
21		4.312 ± 0.015	4.00 ± 0.001	7.28 ± 0.038					
28		4.653 ± 0.014	4.80 ± 0.073	5.16 ± 0.023					
0		6.041 ± 0.064	5.498 ± 0.009	4.525 ± 0.009					
7	Lb. acidophilus	4.914 ± 0.071	8.128 ± 0.180	5.313 ± 0.300					
14	(agar MRS-sorbitol)	3.977 ± 0.281	6.298 ± 0.001	5.502 ± 0.315					
21		5.516 ± 0.166	2.301 ± 0.001	3.952 ± 0.068					
28		3.203 ± 0.038	5.803 ± 0.076	4.556 ± 0.085					

Agradecimiento. A la Universidad Politécnica de Sinaloa por financiar la realización de este proyecto.

Bibliografía.

- 1. AOAC. (2006). Official Methods of Analysis of AOAC International. 18th. Edition
- 2. Farooq K., Haque Z.U. (1992). J. Dairy Sci. 72:2676-2680.
- 3. Harte F., Leudecke L., Swanson B., Barbosa-Cánovas, G. V. (2005). Mundo Lácteo y Cárnico. Nov/Dic.: 10-18.
- 4. Dave R. I., Shah N. P. (1996). J. Dairy Sci. 79:1529-1536.
- 5. Tharmaraj N., Shah N.P. (2003). J. Dairy Sci. 86:2288-2296.