PRODUCCIÓN DE ÁCIDO GIBERÉLICO EN UN REACTOR AIR-LIFT

Ma. del Carmen Chávez Parga, Omar González Ortega, Eleazar M. Escamilla Silva. Laboratorio de Biotecnología y Bioingeniería. Departamento de Ingeniería Química. Instituto Tecnológico de Celaya Av. Tecnológico y A.G. Cubas s/n, 38010 Celaya, Gto. México.

Tel: 461 6 11 75 75 ext. 152, fax: 461 6 11 77 44. e-mail: cchavez@iqcelaya.itc.mx

Palabras clave: ácido giberélico, reactor air-lift.

Introducción. El ácido giberélico (GA₃) es una hormona que se encuentra en plantas y regula un gran número de procesos dentro de las mismas¹, además de ser un producto del metabolismo secundario de ciertos hongos. El hongo *Gibberella fujikuroi* ha sido utilizado en la producción de GA₃ utilizando diversas fuentes de carbono y nitrógeno. El objetivo de este trabajo es la producción de GA₃ en un reactor air lift utilizando medios de cultivo previamente optimizados a nivel matraz utilizando diferentes fuentes de carbono y nitrógeno.

Metodología. Se utilizó la cepa H-984 del hongo *Gibberella fujikuroi*. Se realizaron diseños ortogonales I₉ en matraz para estudiar la composición óptima de los diferentes medios de cultivo utilizando como fuentes de nitrógeno NH₄Cl, NH₄NO₃ y (NH₄)₂SO₄ y como fuentes de carbono dextrosa, aceite de maíz y aceite de ajonjolí. Las variables independientes fueron el pH, cantidad de carbono y cantidad de nitrógeno y la variable dependiente fue la producción de GA₃. De estos diseños se seleccionaron los óptimos correspondientes y se llevaron a cabo en un reactor air-lift MTB (4 L) con células libres manteniendo constante el pH y la temperatura. Se monitorearon la evolución de la biomasa (peso seco), glucosa (DNS), consumo de nitrógeno (Kjendhal) y producción de ácido giberélico (HPLC).

Resultados y Discusión. Los resultados obtenidos del estudio del medio de cultivo a nivel matraz presentan como factores significativos la fuente de carbono, la limitación de la fuente de nitrógeno y el pH durante la fermentación.

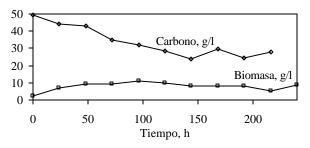


Fig.1. Comportamiento de las fermentaciones.

En la Figura 1 se presenta el comportamiento típico de la producción de biomasa y del consumo de glucosa en el medio fermentativo. La máxima concentración de GA 3 obtenida en matraz fue de 0.05 g/l utilizando como fuente de carbono la dextrosa y de 0.07 g/l utilizando como fuente de carbono los aceites vegetales en un periodo de 240 h. Parece

ser que conforme aumenta la concentración de carbono inicial disminuye la producción de GA₃, sucediendo lo mismo con el pH. Si se permite que la concentración de carbono sea menor a 8 g/l, para el caso de la dextrosa, disminuye considerablemente la producción de GA₃. La concentración de nitrógeno en el medio debe ser tal que permita el crecimiento del microorganismo y que se agote lo más rápido posible para que se active el metabolismo secundario del hongo y comience la producción de GA₃. El color de los medios de cultivo donde se producen mayores cantidades de GA₃ es rojo lo que podría indicar la formación de bikaverina² ligada a la producción de GA₃.

En la Figura 2 se presenta la producción de GA_3 en el reactor air-lift.

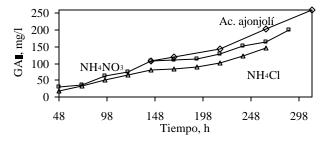


Fig. 2. Producción de ácido giberélico.

Conclusiones. Utilizando como fuente de carbono un aceite vegetal se obtiene una producción de GA_3 un poco mayor que si se utiliza dextrosa, sin embargo el proceso de recuperación del mismo se complica; no sucediendo esto cuando se utiliza dextrosa. La producción de GA_3 es lineal con respecto al tiempo³ y se debe mantener la concentración de carbono por arriba de 8 g/l. El medio de cultivo óptimo encontrado es: dextrosa a 50 g/l, NH₄Cl a 0.75 g/l, pH a 3.

Agradecimientos. Al CONACyT (33973-B) por el apoyo financiero otorgado durante el desarrollo de está investigación.

Bibliografía.

- 1. Brückner, B., Blechschmidt, D. y Recknagel, R.D. (1991). The Gibberellin fermentation. *C. Review in Biotech*, 11(2): 163-192.
- 2. Balan. J. y col. (1970). Bikaverin, an antibiotic from *Gibberella Fujikuroi*, effective against *Leishmania Brasiliensis*. Folia Microbiol. 15: 479-484.
- 3. Borrow, A. y col. (1964). The kinetics of metabolism of *Gibberella Fujikuroi* in stirred culture. *Can. J. Microb.* 10: 407-444.