

MODELO MATEMÁTICO DE UN BIORREACTOR DE PARTICIÓN DE TRES FASES PARA LA SÍNTESIS DE LACTONA

Rodrigo Melgarejo Torres, Pedro Esponda Aguilar, Sergio Huerta Ochoa*

Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col Vicentina México D.F,

C.P. 09340, Tel: 58044999, Fax: 58046554, sho@xanum.uam.mx

Palabras clave: Reactores de partición, transferencia de masa, biocatálisis

Introducción: Se ha reportado el uso de la ciclohexanona monooxigenasa (CHMO) clonada en E. coli (TOP10) en estudios a gran escala para transformar cetonas bicíclicas a su correspondiente lactona¹. En esta reacción el problema de productividad se debe a la inhibición por sustrato y producto, dando como resultado una concentración y rendimiento de producto muy bajos². Recientemente, los líquidos iónicos han surgido como nueva alternativa a los solventes orgánicos en reacciones multifase³. Estos sistemas denominados reactores de partición permiten trabajar bajo condiciones sub-inhibitorias incrementando los rendimientos de la reacción de oxidación (Baeyer-Villiger). El objetivo de este trabajo fue estudiar mediante un modelo matemático el comportamiento del proceso de bioconversión en un reactor de tres fases.

Metodología: Se usó agua ultrafiltrada como fase acuosa, líquido iónico hexafluorofosfato de 1-butil -3-metil imidazolium como fase dispersa, bicyclo[3.2.0] hept-2-en-6ona como sustrato, (1S,5R)-(-)-2-Oxabiciclo{3.3.0} oct-6-en-3-ona como producto y la cepa E. coli (TOP10). Se estudió la inhibición del biocatalizador en presencia de líquido iónico. Se estimaron coeficientes de partición para sustrato y producto entre la fase iónica y acuosa. En un reactor de 1 L (Aplikon System) se calculó el área de transferencia de masa (A) con un analizador de partículas 3D-ORM (MTS, Alemania). El coeficiente de transferencia de oxígeno $(k_l a)$ se estimó con el método dinámico. Los coeficientes de transferencia de masa $(k_I A)$ para sustrato y producto se estimaron en una celda de Lewis modificada⁴.

Resultados: Los coeficientes de transferencia de masa a diferentes condiciones de operación de la celda y el reactor fueron del mismo orden de magnitud tanto para sustrato y producto (2.2 min⁻¹) como para oxígeno (1.6 min⁻¹). Mediante balances de masa en cada fase se desarrolló un modelo matemático para esta bioconversión. La Tabla 1 muestra el análisis de sensibilidad paramétrica. Los parámetros se variaron ±10% en función de las condiciones de operación del reactor. La variable de respuesta fue la productividad máxima del producto.

Tubla 1. Thansis de sensibilidad parametrica del modelo propuesto		
Parámetro de análisis	Valor del	Sensibilidad
	parámetro	paramétrica
Coeficientes de transferencia de sustrato y producto $k = A$	2.2 min ⁻¹	4.56 x 10 ⁻⁶
producto, <i>k_LA</i>		
Coeficientes de transferencia oxígeno, $k_L a$	1.6 min ⁻¹	0.0514
Concentración inicial de biomasa	2 g/L	1.78918

Tabla 1. Análisis de sensibilidad paramétrica del modelo propuesto

La Figura 1 muestra el comportamiento adimensional de sustrato, producto, y oxígeno en la fase acuosa y dispersa a 650 rpm, 0.45 vvm, 0.2 de fracción volumen y 2g/L iniciales de células. Bajo estas condiciones se obtuvieron experimentalmente los valores de coeficientes de transferencia más bajos. Se observó que la transferencia de sustrato de la fase iónica a la acuosa satisface la demanda de la reacción, mientras que la transferencia de producto de la fase acuosa a la iónica evita la inhibición del biocatalizador por producto. El sustrato no se consume en su totalidad debido a la inhibición que presenta el líquido iónico sobre el biocatalizador.

Figura 1. Comportamiento adimensional de sustrato, producto y oxígeno en ambas fases a valores bajos de los coeficientes de transferencia de masa. En condiciones similares de operación con 3g/L de biomasa inicial, se observa en la Figura 2 que la bioconversión finaliza antes que el biocatalizador se inactive.

Figura 2. Comportamiento adimensional de sustrato, producto y oxígeno en ambas fases con una concentración de biomasa inicial de 3 g/L.

Conclusiones: El modelo predice que bajo las condiciones de operación estudiadas no hay problemas de transferencia de masa. Y que el efecto de inhibición por la presencia del líquido iónico puede reducirse aumentando la concentración de células.

Agradecimientos: CONACyT SEP-2003-CO2-42694 **Bibliografía:**

- 1. Doig, S.D., O'Sullivan, L.M., Patel, S., Ward, J.M., Woodley, J.M. 2001. Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239. Enzyme Microb. Technol., (28): 265-274
- 2. Doig, S.D., Bird, J., Lander, S., Lye, G., Woodley, J. 2002. Reactor Operation and Scale-Up of Whole Cell Baeyer-Villiger Catalyzed Lactone Synthesis. Biotechnol. Prog., 18, 1039-1046.
- 3.Cull, G., Holbrey, D., Vargas-Mora, V., Seddon, R., Lye G. 2000. Room-Temperature Ionic Liquids as Replacements for Organic Solvents in Multiphase Bioprocess Operations. Biotech. and Bioeng, 69-2.
- 4. Melgarejo Torres, R., Esponda Aguilar, P., Huerta Ochoa, S. 2006. Estudio de la transferencia de masa entre dos fases inmiscibles por medio de una celda de Lewis modificada. V Encuentro Nacional de Biotecnología del IPN. México D.F.