

RESISTENCIA DE Euglena gracilis A CROMO HEXAVALENTE

Jorge Donato García García y Rafael Moreno Sánchez

Departamento de Bioquímica, Instituto Nacional de Cardiología, Juan Badiano #1, Tlalpan Sección XVI, CP 14080, México, DF., Tel. 55 73 29 11 ext. 1422, Fax 55 73 09 26.Correo: jorgedonatogarcia@yahoo.com

Palabras clave: cisteína, glutatión, acumulación

Introducción: Euglena gracilis es un protista de vida libre con capacidad de acumular metales pesados. Resulta de interés biotecnológico el determinar los mecanismos bioquímicos que le confieren a *E. gracilis* esta capacidad. El cromo es un metal ampliamente utilizado y en México la principal fuente de contaminación es la industria curtidora ¹. La especie Cr (VI) comúnmente se encuentra formando sales de cromato (CrO₄²⁻) y es cancerígena. El cromato utiliza transportadores de SO₄²⁻ para entrar a la célula; una vez dentro, es reducido a Cr (III) en una reacción mediada principalmente por GSH. La especie Cr (III) generada intracelularmente puede interactuar con macromoléculas^{2,3}.

Objetivo: Evaluar los mecanismos bioquímicos que le permiten a *Euglena gracilis* resistir altas concentraciones de cromo hexavalente.

Metodología: Se cultivo a *E. gracilis* fotosintética⁴ con distintas concentraciones de K₂CrO₄. Se siguió la cinética de crecimiento mediante conteo de células viables tiñendo con azul tripano. Se cuantificó clorofila por el método de Arnon. Se evaluó el perfil de tioles solubles mediante HPLC⁴ y Cr_{Total} mediante espectrofotometría de absorción atómica.

Resultados y discusión: Las cinéticas de crecimiento mostraron recuperación a la exposición con el metal. Se obtuvo una IC50 = 460 μM K₂CrO₄ (*Figura 1*). Este valor fue alto respecto a lo descrito en la literatura. Se disminuyeron los niveles de SO₄²⁻ en el medio de cultivo para evaluar la influencia de este oxianión sobre la sensibilidad de *E. gracilis* a Cr (VI). Las IC50 obtenidas fueron 142 y 141 μM de K₂CrO₄ con 0.8 y 0.3 mM de SO₄²⁻, respectivamente, en el medio de cultivo.

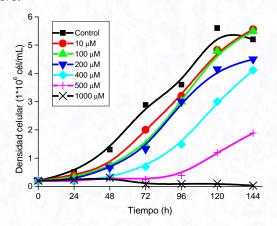


Figura 1. Cinética de crecimiento de <u>Euglena gracilis</u> cultivada con distintas concentraciones de K_2CrO_4 y con 2.8 mM SO_4^{2-} .

Condiciones de cultivo	2.8 mM SO ₄ ²⁻	0.8 mM SO ₄ ²⁻	0.3mM SO ₄ ²⁻	* 2.8 mM / 450 µM	* 0.8 mM / 142 μM	
Cisteína	10	19	25	40	116	92
$GSH + \gamma EC$	10	18	14	14	26	27

*mM SO₄²-/µM K₂CrO₄

nmol/1x10⁷cél

Tabla 1. Determinación de tioles solubles en *E. gracilis* expuesta a K_2CrO_4 en tres concentraciones de SO_4^{2-} en el medio de cultivo.

En estas tres condiciones de SO_4^{2-} y CrO_4^{2-} se observó una clorosis moderada del 40% al incubar a las células por 24 y 120 h.

El GSH es un agente reductor y también puede unir metales pesados con lo cual disminuye la toxicidad de los mismos⁴. Se evaluó la respuesta de tioles solubles (Cys, GSH y γ -EC) y fitoquelatinas de *E. gracilis* ante la exposición a K_2 CrO₄. Se observó aumento en la concentración de Cys de 4-6 veces en muestras expuestas con respecto a los controles (*Tabla 1*). La concentración de GSH no varió y no se observó inducción de fitoquelatinas.

El Cr_{Total} acumulado después de 120h fue de 4 nmol/1 $X10^7$ cél en células expuestas a 150 μ M de CrO_4^{2-} y 0.8 mM de SO_4^{2-}

Conclusiones:

- E. gracilis resiste altas concentraciones de Cr(VI) (1mM K₂CrO₄)
- La sensibilidad de *E. gracilis* a Cr(VI) consiste en un retraso en la fase exponencial de crecimiento y en una clorosis moderada, las cuales depende de la concentración de SO₄²⁻ en el medio de cultivo.
- El Cr(VI) no altera los niveles de glutatión y no induce síntesis de fitoquelatinas, pero produce la acumulación de cisteína que podría ser utilizado como mecanismo de resistencia de *E. gracilis*.
- E. gracilis no es hiperacumuladora de Cr (VI).

Bibliografía:

- 1.- Moreno-Sánchez R. y Devars S. (1999) Abundancia de los metales pesados en la biosfera. En: Contaminación ambiental por metales pesados. Cervantes C. y Moreno-Sánchez R. AGT EDITOR, México. Capítulo 1, pág 1-10
- 2.- Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC and Moreno-Sánchez R. (2001) Interactions of chromium with microorganisms and plants. *FEMS Microbiol Rev.* 25:335-347
- 3.- Valko M, Morris H and Cronin MTD. (2005) Metals, toxicity and oxidative stress. *Curr Med Chem.* 12:1161-1208
- 4.- Mendoza-Cózatl DG and Moreno-Sánchez R. (2005) Cd^{2+} transport and storage in the chloroplast of *Euglena gracilis*. *Biochim Biophys Acta*. 1706:88-97