

ULTRAFILTRACIÓN DE CALDOS DE FERMENTACIÓN: MODELO DE RESISTENCIAS

Carlos Orozco Alvarez, Gerardo Albarrán Torres y Rosa Esteban Martínez.

Departamento de Bioingeniería. Unidad Profesional Interdisciplinaria de Biotecnología. IPN.Av. Acueducto S/N. Col. Barrio La laguna Ticomán. G.A. Madero. México, D.F.

Fax: 57 29 60 00 ext. 56305. e-mail: tepoztlan61@yahoo.com.mx

Palabras clave: astaxantina, ultrafiltración, levadura

Introducción. El presente proyecto investiga la ultrafiltración de caldos de fermentación *Phaffia rhodozyma* la cual produce astaxantina. Esta última es un pigmento ampliamente utilizado como aditivo en el cultivo acuícola del salmón para que adquiera la coloración típica y atractiva, además de funcionar como agente antioxidante en la célula. Así, el objetivo es obtener correlaciones empíricas para aplicar el modelo de resistencias y que este último represente el comportamiento de la ultrafiltración:

$$flux := \frac{PTM}{Rm + Rf + \phi PTM}$$

Metodología. Se trabajó con un cartucho de fibras huecas de 100 kDa bajo las siguientes condiciones: presiones transmembrana (PTM) de 0 a 210 kPa, velocidades de alimentación (v_{alim}) de 0.1 a 1.0 m/s, pH de 4.6 y temperatura de 30 °C. Las concentraciones de levadura, hasta ahora, fueron 10, 32 y 52 kg/m³

Resultados y discusión. Para obtener correlaciones de la densidad y viscosidad del caldo de fermentación en función de la concentración de levadura, se trabajó con concentraciones de 10 hasta 110 kg/m³, obteniéndose las siguientes:

$$\mu = 0.9359 e^{(0.0299 x C_L)}$$

$$\rho = 0.2822 (C_L) + 1016.4$$

donde:

μ: viscosidad en miliPa.s

C_L concentración de levadura en kg/m³

ρ: densidad en kg/m³

Posteriormente, se determinaron las constantes reológicas (*n* y *K*) de los caldos de fermentación bajo las mismas concentraciones de levadura (10 a 110 kg/m³) con un viscosímetro Haake modelo RV20 (velocidad de corte de 100 a 3000 s⁻¹) obteniéndose las siguientes correlaciones:

$$n = 1.0423 e^{(-0.002 C)}$$

 $K = 0.6859 e^{(0.0448 C)}$

donde:

n: índice de comportamiento

K: índice de consistencia en miliPa.sⁿ

En la figura1, se muestra el comportamiento de la ultrafiltración de los caldos de fermentación. Este mismo comportamiento sucede a 10, 32 y 52 kg/m³ de concentración de levadura, y con todos estos resultados es posible determinar los valores de R_f y ϕ como se muestran en el cuadro 1. Finalmente se pueden obtener las siguientes correlaciones:

$$\begin{array}{l} \phi = 3 \text{ x } 10^{\text{-5}} \text{ (v_{alim})}^{\text{-0.0009}} \text{ (C_L)}^{4.35} \\ R_f = 1.9 \text{ x } 10^{\text{-6}} \text{ (v_{alim})}^{\text{-0.025}} \text{ (C_L)}^{0.009} \end{array}$$

donde:

φ: en (s/m)

R_f: en (kPa.s/m)

v_{alim}: velocidad de alimentación (m/s)

Cuadro 1. Resultados obtenidos de R_f y ϕ $(R_m=1.340 \ x10^{-6} \ kPa.s/m)$

$C_{\rm L}$	V _{alim}	$R_m + R_f$	ф	$R_{\rm f}$
(kg/m^3)	(m/s)	$(x10^{-6} \text{ kPa.s/m})$	$(x10^{-5} \text{ s/m})$	$(x10^{-6} \text{ kPa.s/m})$
10	0.1582	3.481	0.643	2.141
	0.3216	1.743	0.543	0.404
	0.5186	1.485	0.422	0.145
	1.058	1.379	0.359	0.039
32	0.1582	6.852	1.159	5.513
	0.3216	3.724	0.828	2.384
	0.5186	2.018	0.436	0.678
	1.058	1.477	0.370	0.137
52	0.1582			
	0.3216			
	0.5186	2.190	0.680	0.850
	1.058	1 754	0 504	0 414

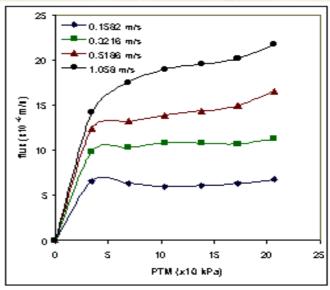


Figura 1. Efecto de la velocidad de alimentación en la ultrafiltración de caldos de fermentación. $C_L = 32 \text{ kg/m}^3$.

Conclusiones. Se obtuvieron las correlaciones empíricas necesarias para la aplicación del modelo de resistencias el cual representará el comportamiento de la ultrafiltración de los caldos de fermentación

Agradecimientos. Este trabajo fue financiado por CGPI/IPN. **Bibliografía.**

1. Orozco, A. C., Vidal, R. D., García, S. S., y Ordaz, C. L. (2003). Concentración de suspensiones de levadura por filtración tangencial. *Tecnología de alimentos*, Vol. 38, #2, p. 7-17.

2.Yeh, H. M., Wu, H. P. and Dong, J. F. (2003). Effects of design and operating parameters on the declination of permeate flux for membrane ultrafiltration along hollow-fiber modules. *J. Membrane Sci.*, 213, 33-44.