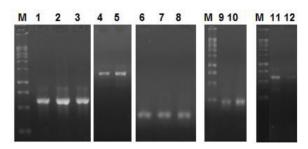


EXTRACCIÓN DE ADN DE MICROORGANISMOS PRESENTES EN MOSTO DE AGAVE

<u>Diana Sofía Torres Velázquez</u>, Jesús Bernardo Páez Lerma, Juan Antonio Rojas Contreras, Norma Urtiz Estrada, Nicolás Oscar Soto Cruz, Javier López Miranda. Instituto Tecnológico de Durango. Unidad de Posgrado, Investigación y Desarrollo Tecnológico. Durango, Dgo. C.P. 34080. dsofiatorresv@hotmail.com

Palabras clave: microorganismos, extracción de ADN, mosto de agave

Introducción. Con la intención de mejorar la comprensión de procesos fermentativos, como la fermentación artesanal de mosto de agave; se han implementado técnicas moleculares, en las que se analizan los ácidos nucleicos de microorganismos del sistema estudiado (1) (2). La extracción de ADN es una etapa crítica que debe adaptarse a cada caso, ya que un correcto análisis depende de que se incluyan todos los microorganismos presentes (3).


Este trabajo tiene como objetivo diseñar una técnica simple, rápida y poco costosa, aplicable para la obtención de ADN de buena calidad y en cantidades adecuadas para PCR proveniente tanto de microorganismos procariotas como de eucariotas aislados o presentes en muestras de mosto de agave.

Metodología. Se tomó como referencia la técnica reportada por Harju et al., en 2004. Se empleó el buffer de lisis propuesto por Tappia-Tussel et al., en 2006 (50mM Tris-base, 250nM NaCl, 50mM EDTA pH 8, 0.3% SDS w/v), se tomaron muestras de mosto y cultivos puros aislados con diferente morfología. La técnica consistió en la adición de perlas de vidrio (0.1mm) y tres tratamientos de congelación en baño de isopropanol, descongelación a 100°C por un minuto y agitación por 5min en vórtex, luego se adicionó un volumen de cloroformo y centrifugó (11400 x g,10min) para retirar impurezas, el ADN presente en la fase superior se precipitó con un volumen de etanol absoluto y se enjuagó con etanol al 70%, se dejó secar y resuspendió en TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 10 mM NaCl). El ADN se cuantificó en un nano espectrofotómetro y se amplificó empleando primers específicos para eucariotas y procariotas.

Resultados. En la Tabla 1 se muestran los rangos de ADN obtenidos, que fueron superiores a los valores logrados con la técnica de referencia, la variación se atribuye a diferencias estructurales de los microorganismos, se indican los tiempos de cultivo o la cantidad de mosto empleado para la extracción. En la Figura 1, se muestran las bandas de amplificados, a partir del ADN extraído con la técnica propuesta, en todos los casos fue necesario diluir las muestras.

Tabla 1. Cuantificación de ADN de las distintas procedencias

μg de ADN	Bacterias (1d)	Levaduras (2d)	Mohos (5d)	Mosto (5mL)
Referencia	1.8-2	2-18.4	ND	1.6-11.2
Propuesta	111.6-120	91.5-243	1.5-6.7	19-37.2

Fig. 1. Se muestran de izquierda a derecha: amplificados de ADN extraído de levaduras, hongos, bacterias y mosto empleando primers específicos para eucariotas y procariotas respectivamente.

Conclusiones. La técnica propuesta es rápida, sencilla y económica y permite obtener cantidades elevadas de ADN, apto para realizar amplificación.

Agradecimiento. Éste estudio se desarrolló con el apoyo del Consejo Nacional de Ciencia y Tecnología (CONACyT), y fue financiado por la Dirección General de Educación Superior Tecnológica de México (DGEST), agradecemos además a la Facultad de Ciencias Químicas de Durango por su apoyo y colaboración.

Bibliografía.

- Escalante-Minakata P, Barba de la Rosa A, Santos L, De León-Rodriguez A. (2012). BioTecnología. 1: 57-70.
- Cocolin L, Campolongo S, Alessandria V, Dolci P, Rantsiou K. (2011). Ann Microbiol. 61:17–23.
- 3. Ercolini D. (2004). Journal of Microbiological Methods. 56: 297–314
- Harju S, Fedosyuk H, Peterson K. (2004). BMC Biotechnol. 21(4):8.
- Tapia-Tussell R, Lappe P, Ulloa M, Quijano-Ramayo A, Cáceres Farfán M, Larqué-Saavedra M, Pérez-Brito D. (2006). Molecular Biotechnology.33: 67-70.