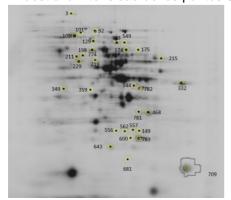


## Análisis Proteómico de la vías de señalización mediadas por la subunidad α Pga1 de una proteína G heterotrimérica de *Penicillium chrysogenum* mediante la técnica 2D-DIGE

<u>Ulises Carrasco<sup>1</sup></u>, Francisco J. Fernández<sup>1</sup>, Horacio Reyes<sup>2</sup>, Rosario Vera<sup>3</sup>, Bronwyn J. Barkla<sup>3</sup>, Francisco Fierro<sup>1</sup>

<sup>1</sup>UAM, Unidad Iztapalapa, Departamento de Biotecnología. <sup>2</sup>Instituto Nacional de Pediatría. <sup>3</sup>Instituto de Biotecnología, UNAM<sup>3</sup>.

Universidad Autónoma Metropolitana, Unidad Iztapalapa Av. San Rafael Atlixco No.186. Col. Vicentina, México, D.F. C.P. 09340.


Tel. (55)5804 6438 ulises.c.n@gmail.com

Palabras clave: Penicillium chrysogenum, 2D-DIGE, Proteínas G

Introducción. Penicillium chrysogenum es el hongo empleado industrialmente para la producción de penicilina. Uno de los factores que influyen en la biosíntesis de este antibiótico y otros metabolitos secundarios son las proteínas G (1). El objetivo de este trabajo es un análisis proteómico mediante la técnica de 2D-DIGE para identificar cambios en el proteoma de *P. chrysogenum* en función de la subunidad α Pga1 de una proteína G heterotrimérica.

Metodología. Se compararon los proteomas de la cepas de P. chrysogeum Wis-541255 (control) y Δpga1 (deleción del gen pga1) (1). Los extractos proteicos de cuatro replicas biológicas se obtuvieron según lo reportado (2). Las proteínas se marcaron con los fluorógenos Cy2 (estándar interno), Cy3 y Cy5 de acuerdo a lo reportado (3). Para la separación por punto isoeléctrico se usaron tiras IPG de 17 cm, pH 3-10, en un equipo de isoelectroenfoque (Bio-Rad). Para la segunda dimensión (SDS-PAGE) se usaron geles al 12% en el equipo de electroforesis Ettan Dalt Six (GE). La adquisición de imágenes se realizo en el equipo de escaneo Typhoon 9400 (GE). El análisis de expresión diferencial se realizó en el programa DeCyder-2D v6.5 (GE). Los puntos de proteínas de interés (Cambio: ±1.5. ANOVA: valor-p ≤ 0.05) fueron extraídos de los geles en el equipo Ettan Spot Handling Workstation (GE). La identificación de proteínas se realizo por LC-MS/MS en el equipo LTQ-Orbitrap (Thermo) y la validación en el programa Scaffold (Scaffold 4.0.5).

Resultados. La figura 1 muestra la imagen representativa de uno de los geles 2D-DIGE del experimento. La tabla 1 muestra las proteínas diferencialmente expresadas al comparar los proteomas. La figura 2 muestra la intensidad de los puntos 3 y 198.



**Fig 1**. 2D-DIGE representativo de *P. chrysogenum*, las marcas indican las proteínas que cambian de abundancia en función de Pga1.

**Tabla 1.** Proteínas identificadas que cambian de abundancia al comparar las cenas Wis 54-1255 y Apga1

| #Spot | Proteína                                                        | Cambio de<br>abundancia | ANOVA<br>(valor p)   | Proceso<br>biológico                                  |
|-------|-----------------------------------------------------------------|-------------------------|----------------------|-------------------------------------------------------|
| 3     | Proteína con<br>dominio PH<br>(Pleckstrin<br>domain             | -2.57                   | 0.019                | Señalización<br>celular                               |
| 101   | Proteína de<br>choque térmico<br>HSP90                          | 2.44                    | 0.00042              | Plegamiento de<br>proteínas,<br>respuesta a<br>estrés |
| 129   | Chaperona Ssb2                                                  | -3.42                   | 0.0016               | Plegamiento de<br>proteínas,<br>respuesta a<br>estrés |
| 149   | Sulfato-<br>adeniltransferasa                                   | -1.7                    | 0.033                | Biosíntesis de<br>Cisteína y<br>Metionina             |
| 174   | Piruvato cinasa                                                 | -1.6                    | 0.045                | Glucólisis                                            |
| 175   | Inosina<br>monofosfato-<br>deshidrogenasa                       | -1.89                   | 0.0012               | Biosíntesis de<br>nucleótidos de<br>guanina           |
| 198   | Proteína con<br>dominio Ankyrin                                 | -3.42                   | 0.00041              | Interacción<br>proteína-<br>proteína                  |
| 468   | Urato oxidasa                                                   | 2.84                    | 1.4x10 <sup>-6</sup> | Metabolismo<br>de purinas                             |
| 556   | Levodiona<br>reductasa<br>(deshidrogenas<br>de cadena corta)    | 1.53                    | 0.047                | Procesos de<br>oxido-<br>reducción                    |
| 557   | Anhidrasa carbónica                                             | 2.2                     | 0.0037               | Utilización de<br>Carbono                             |
| 562   | Ran                                                             | 2.39                    | 0.00073              | Transporte<br>intracelular de<br>proteínas            |
| 709   | Ribotido 5-<br>aminoimidazol-4-<br>carboxamida<br>tranformilasa | 1.87                    | 8.8x10 <sup>-7</sup> | Biosíntesis de<br>nucleótidos de<br>purina            |
| 773   | Trancetolasa                                                    | -1.94                   | 0.0097               | Ruta de las<br>pentosas<br>fosfato                    |
| 781   | Proteína<br>ribosomal S3                                        | 3.49                    | 2.8x10 <sup>-6</sup> | Traducción                                            |
| 782   | Alcohol<br>deshidrogenasa                                       | -2.76                   | 0.017                | Procesos de<br>oxido-<br>reducción                    |



Fig. 2. Imágenes 3D de dos proteínas de interés. A) Punto 3 (dominio Pleckstrin). B) Punto 198 (repetidos de Ankyrin)

**Conclusiones.** La comparación de los proteomas muestra cambios de proteínas de metabolismo general, estrés y señalización celular debido a la deleción del gen *pga1*. Dos proteínas de interés serán sujetas a silenciamiento por ARNi (puntos 3 y 198) para identificar nuevos efectores de la vía de proteínas G

Agradecimientos. Al CONACyT por la beca otorgada Bibliografía. (1). Ramón G, Fierro F, Martín J. Biochem Cell Biol. 86, 57-69. (2). Mohammad J, Barreiro C, García C, Martín J. Mol Cell Proteomics. 9, 1182-1198. (3). Vera S, Bronwyn B, Pantoja O. J Proteomics. 111, 113-127.