

Efecto de la razón H/C del sustrato, en la respiración de Pichia pastoris cultivada en medio sólido.

Josué Zarate-Bonilla, Divanery Rodríguez-Gómez, Gustavo Viniegra-González, Ernesto Favela-Torres. UAM-Iztapalapa, Dpto. Biotecnología. México D.F. C.P.09340, josh_24zarate@hotmail.com

Palabras clave: Cultivo en medio sólido, tasa de mantenimiento, rendimiento.

Introducción. Pichia pastoris es muy utilizada en la producción de proteínas heterólogas. Su actividad respiratoria, a diferencia de Saccharomyces, no se inhibe por altas concentraciones de azúcares (Crabtree negativa) [1]. Esto favorece la producción de cultivos con alta densidad celular. Las fuentes de carbono y energía usuales son glicerol (H/C = 8/3) o glucosa (H/C = 6/3), en mostos fortificados con sales minerales. López et al. [2] desarrollaron la producción de lacasa recombinante con un cultivo de P. pastoris crecido en un mosto de glicerol absorbido por espuma de poliuretano (EPU) y fortificado con sales minerales. Aquí se presenta el análisis de la respiración de este organismo, medida en línea, con mostos de glicerol y glucosa, fortificados con sales minerales, y absorbidos en placas delgadas de EPU (Fig. 1). El modelo de análisis fue el logístico, con tasa de crecimiento, u, v constante de mantenimiento, m [3], mostrado en la ecuación (1)

Metodología.

Figura 1. Tubos con placas horizontales de EPU, con flujo continuo de aire humidificado y con temperatura constante. El CO₂, se determinó en línea por cromatografía.

$$\frac{dCO_2}{dt} = \frac{R_A\left(\frac{U}{1+U}+\gamma\right)}{1+U}; \qquad U = \left[\frac{X_{max}}{X_0}-1\right]e^{-\mu t} \tag{1}$$

$$R_A = \frac{\mu X_{max}}{Y_{X/CO_2}} \text{ mg CO}_2 \text{ g}_{\text{EPU}}^{-1} \text{h}^{-1}; \qquad \qquad \gamma = \frac{m Y_{X/CO_2}}{\mu}$$

Resultados. En las Figs. 2a y 2b se muestra que con, $S_0 = 50$ g/L, la tasa de mantenimiento fue despreciable, $\gamma \approx 0$ puesto que las curvas respiratorias fueron simétricas, con glicerol y glucosa. Pero, con, $S_0 = 100$ g/L, para glicerol, y, $S_0 = 150$ g/L, para glucosa, fueron $\gamma \square \square \approx 0.04$ e $\gamma \approx 0.02$ respectivamente, puesto que la respiración residual, R_A , fue medible casi dos días

después de que los cultivos alcanzaron la tasa respiratoria máxima; que con glucosa fue $\approx 50~mgCO_2$ $g_{epu}^{-1}h^{-1}$ y con glicerol $\approx 25~mgCO_2~g_{epu}^{-1}h^{-1}.$ Por otro lado, al no haber mantenimiento, m, a bajas concentraciones de sustrato, se observo los mayores rendimientos, $Y_{x/s},$ en ambos casos (tabla1).

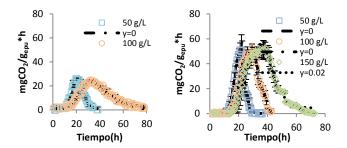


Figura 2. Tasa respiratoria (mgCO₂g_{epu} h - 1) utilizando a) glicerol S₀ (g/L) = 50 y 100, b) glucosa S₀ (g/L) = 50, 100 y 150. Los ajustes según la ecuación (1) ya descrita [3],

Tabla 1. Parámetros de crecimiento (X_m, biomasa máxima; Y_{x/s}, rendimiento; mCO₂, coeficiente de mantenimiento). Se aplicó la prueba de Duncan con *p*=0.05.

Parámetro	X _m (gX /g _{epu})	Y _{x/s} (gX /gS)	mCO₂ (g S/gCO₂*h)
Glicerol			
50 g/L	0.37±0.015b	0.53±0.1a	0±0a
100 g/L	0.49±0.08c	0.33±0.05b	0.01±0.002b
Glucosa			
50 g/L	0.24±0.003a	0.44±0.04a	0±0a
100g/L	0.31±0.02ab	0.22±0.01b	0±0a
150g/L	0.56±0.04c	0.24±0.02b	0.01±0.002b

Conclusión. Los mayores rendimientos celulares $Y_{X/S}$ (medidos por separado) y el menor valor de R_A , concuerdan con el mayor valor H/C del glicerol con respecto a la glucosa (tabla 1).

Bibliografía

- Baumann, K., Carnicer, M., Dragosits, M., Graf, A. B., Stadlmann, J., Jouhten, P. Ferrer, P. 2010. BMC systems biology, 4(1), 141.
- López, M., Loera, O., Guerrero-Olazarán, M., Viader-Salvadó, J. M., Gallegos-López, J. A., Fernández, F. J., Viniegra-González, G. 2010. *J chem Technol Biotechnol*, 85(4), 435-440.
- Lareo, C., Sposito, A. F., Bossio, A. L., Volpe, D. C. 2006. Enzyme Microb Technol, 38(3), 391-399.