

RECUPERACIÓN DEL GEN ASPORÓGENO EN PROGENIE DE CEPA DE PLEUROTUS spp. CON FENOTIPOS MEJORADOS

Rosario González, María Fernanda Ayub, Abraham Sánchez, <u>Rebeca Ramírez</u>, Hermilo Leal, Facultad de Química, Departamento de Alimentos y Biotecnología, Conjunto E, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. 04510, eberraca@gmail.com.

Palabras clave: Mejoramiento genético, cepas asporógenas, setas.

Introducción. El aumento en la producción de hongos comestibles pertenecientes a especies del género Pleurotus, conocidas en México como setas, hace la implementación de técnicas necesaria meioramiento genético, desarrollo de У cepas asporógenas [1]. La gran cantidad de esporas producidas por los basidiomas ocasiona que los trabajadores de las plantas productoras desarrollen una alergia con síntomas similares a una "alveolitis alérgica extrínseca" [2]. En trabajos previos se recuperaron por dedicaritoización los componentes monocarióticos (neohaplontes) de 2 cepas de Pleurotus con fenotipos de interés comercial: PAsp14 y PSma, la primera de carácter asporógeno y la segunda con características atractivas para la producción comercial, color blanco y estípite corto. Los neohaplontes obtenidos fueron apareados para producir cepas mejoradas [3], dentro de las que se encuentra la cepa PAsp14-n8a x PSma-n12j

El objetivo del trabajo fue evaluar la recuperación del gen asporógeno en la progenie de la cepa PAsp14-n8a x PSma-n12i.

Metodología.

Aislamiento de progenie meiótica de cepa PAsp14-n8a x PSma-n12j.

Clasificación de progenie en 4 tipos de compatibilidad e identificación de tipos parentales y recombinantes.

Identificación de la distribución del gen asporógeno en la progenie meiotica.

- Producción de dicariotes portadores del gen asporógeno.
- Fructificación e identificación de dicariotes portadores del gen asporógeno.

Resultados.

Después de germinar la progenie meiótica de la cepa PAsp14-n8a x PSma-n12j se obtuvieron 32 colonias monocarióticas. Al clasificarlas en los 4 tipos de compatibilidad se observó una distribución de 1:1:1:1 según la prueba de χ^2 (Tabla 1). Todos los apareamientos de la progenie con el neohaplonte nh1a de la cepa PAsp14 fueron positivos. Los dicariotes obtenidos se llevaron a fructificar y en los cuerpos fructíferos producidos se evaluó al microscopio el carácter asporógeno o esporulante. De los 32 dicariotes obtenidos, 17 fueron de tipo asporógeno y 15 de tipo esporulante, lo que indica que el carácter asporógeno se presentó en 50% de la progenie y con una distribución 1:1 para los 4 tipos de compatibilidad (Tabla 2).

Tabla 1. Clasificación e identificación de tipos de compatibilidad de progenie meiótica de cepa PAsp14-n8a x PSma-n12j

Tipos de compatibilidad							
Pare	entales						
PSma-nh12j	PAsp14-nh8-a	Recombinantes					
I	II	III	IV				
8	9	11	4				

 χ^2 Calculada para distribución 1:1:1:1 = 3.25, χ^2 Tablas (α = 0.05) = 7.81

Tabla 2. Distribución del gen asporógeno en los dicariotes producidos al aparear la progenie monocariótica de la cepa PAsp14-n8a x PSma-n12j con el neohaplonte nh1a de la cepa PAsp14

Tipos de compatibilidad									
ı		II		III		IV			
Relación de dicariotes Asporógenos / Esporulantes									
Asp (-)	Esp (+)	Asp (-)	Esp (+)	Asp (-)	Esp (+)	Asp (-)	Esp (+)		
3	3:5 4:5		8:3		2:2				
Valores de χ^2 para distribución 1:1									
0	0.5 0.25		2.6		0				

 $[\]gamma^2_{\text{Tables}} (\alpha = 0.05) = 3.84$

Conclusiones.

La frecuencia de distribución de los monocariotes progenie en los 4 tipos de compatibilidad fue 1:1:1:1 Al aparear los monocariotes progenie con el neohaplonte nh1a de la cepa PAsp14 y fructificar los dicariotes, el 50% fue de tipo asporógeno.

Como resultado del mejoramiento genético se cuenta con 17 cepas de *Pleurotus* spp. de tipo asporógeno.

Bibliografía.

- Martínez- Carrera, D., López Martínez de Alva, L. (2010). Historia del cultivo comercial de hongos comestibles en México II: éxitos y fracasos durante el período 1991 – 2009. En: Hacia un Desarrollo Sostenible del Sistema de Producción de los Hongos Comestibles y Medicinales en Latinoamérica: Avances y Perspectivas en el Siglo XXI. Martínez – Carrera, D., Curvetto, N., Sobal, M., Morales, P., Mora, V.M. (Eds.). Red Latinoamericana de Hongos Comestibles y Medicinales COLPOS-UNS-CONACYT-AMC-UAEM-UPAEP-IMINAP. Puebla, México. 513 – 551.
- Zacharisen, M. C., Fink, J. N. (2008). Extrinsic allergic alveolitis /hypersensitivity pneumonitis. In: *Allergy and Allergic Diseases*. Kay, A.B., Kaplan, A.P., Bousquet, J., Holt P.G. (Eds.) Blackwell Publishing. U.K. 1758 – 1778.
- Sánchez Hernández, A. (2013). Recuperación de componentes monocarióticos de cepas comerciales del género *Pleurotus* por dedicariotización. *Tesis de licenciatura*. Facultad de Ciencias, UNAM. México, D.F.