

GROWTH OF VEGETATIVE PHASE OF WHITE ROT FUNGI GROWN ON DI (2-ETHYL-HEXYL) PHTHALATE

^{1,3}Angel González Márquez, ^{1,2}José Luis Torres García, ^{1,3}Miriam Ahuactzin Pérez, ^{1,2}Gerardo Díaz Godínez, ^{1,2}Rubén Díaz Godínez, ^{1,2}Carmen Sánchez Hernández*; ¹Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlax., C.P. 90120, México. Tel/Fax +52 2484815482, ²Maestría en Ciencias Biológicas, UAT, Tlaxcala, Tlax., C.P. 90062, México, ³Facultad de Agrobiología, UAT, Ixtacuixtla, Tlax., C.P. 90120, México, **corresponding autor*. email: <u>sanher6@hotmail.com</u>

Key words: White-rot fungi, phthalate, vegetative phase

Introduction. White-rot fungi have two growth phases. Vegetative phase (hyphae) and reproductive phase (fruiting body)¹. These fungi produce ligninolytic enzymes capable of oxiding lignin and some xenobiotics such as phthalates². Phthalates are aromatic esters used as plasticizers³. Di (2-ethyl-hexyl) phthalate (DEHP) provide flexibility and malleability to polyvinyl chloride (PVC)⁴. The objective of this work was to evaluate the growth in the vegetative phase of white rot fungi on different concentrations of DEHP.

Methods. Radial growth $(u_r)^5$ and biomass $(Bm)^6$ of *Pleurotus ostreatus* ATCC26, *P. ostreatus* ATCC37 and *Lentinula edodes* were evaluated in media containing mineral salts (MS) and different concentrations of DEHP (mg/l): 1) medium containing MS (without DEHP), 2) 750 of DEHP+MS, 3) 1200 of DEHP+MS and 4) 1500 of DEHP+MS. Diameter of hyphae (DH) and thickness from the cell wall (TCW) from the young zone (YZ) and mature zone (MZ) were evaluated using image analysis on (Image Pro-Plus program).

Results. *P.* ostreatus 26 had higher u_r and DH on the medium containing 1200 of DEHP+MS compared with the other two fungi. *P.* ostreatus 37 had higher Bm on the medium containing 1200 of DEHP+MS compared with the other strains (Table 1). *L.* edodes had higher TCW on the medium containing 1200 of DEHP +SM compared with other fungi. *L.* edodes presented the highest DH in 1500 mg/l of DEHP (Tables 1,2).

Table 1. Radial growth rate and biomass of different strains of white rot fungi grown on different

concentrations of DEHP.

	Culture media								
Strain		u, (mm/h)		Bm (g/cm ²)				
	MS	MS+750	MS+1200	MS+1500	MS	MS+750	MS+1200	MS+1500	
		mg/l DEHP	mg/I DEHP	mg/l DEHP		mg/I DEHP	mg/l DEHP	mg/l DEHP	
P. ostreatus 37	0.09 ^e (0.004)	0.07 ⁶ (0.008)	0.09" (0.017)	0.02° (0.010)	0.004 ^e (0)	0.008 ^e (0.001)	0.008 ^e (0.001)	0.005 ⁶ (0.0005)	
L edodes	0.14 ^c (0.002)	0.15 ⁶ (0.005)	0.16 ^b (0.003)	0.20" (0.009)	0.002 ^d (0.0005)	0.005 ⁶ (0.001)	0.004 ^e (0.001)	0.007 ^e (0.001)	
P. ostreatus 28	0.14 ^e (0.008)	0.25" (0.006)	0.24" (0.013)	0.20 ⁶ (0.036)	0.005 ^b (0.0005)	0.007 ^e (0.001)	0.003 ^e (0.003)	0.007 ^e (0.001)	

Means with the same letter within a row are not significantly different. Data were evaluated using ANOVA and Tukey test. (P<0.01). Numbers in parenthesis correspond to SD of three separate experiments.

Table 2. Thickness from the cell wall of different strains
of white rot fungi grown on different concentrations of
DEHP.

	TCW (µm)								
Strain	Culture media								
	MS		MS+750 mg/l DEHP		MS+1200 mg/l DEHP		MS+1500 mg/l DE HP		
	YZ	MZ	YZ	MZ	YZ	MZ	ΥZ	MZ	
P. ostreatus 37	0.49 ^d	0.47 ^d	0.61 ^b	0.61 ^b	0.57°	0.72ª	0.63 ^b	0.50 ^d	
	(0.030)	(0.032)	(0.016)	(0.034)	(0.026)	(0.041)	(0.044)	(0.034)	
L. edodes	0.59°	0.66 ^b	0.68 ^b	0.66 ^b	0.60°	0.73*	0.64 ^b	0.65 ^b	
	(0.028)	(0.097)	(0.016)	(0.012)	(0.031)	(0.078)	(0.009)	(0.029)	
P. ostreatus 26	0.65°	0.65*	0.64*	0.66*	0.60 ^b	0.64*	0.60 ^b	0.62*	
	(0.029)	(0.012)	(0.036)	(0.017)	(0.014)	(0.024)	(0.030)	(0.018)	
Means with the same letter within a row are not significantly different. Data were evaluated using ANOVA and Tukey test. (P<0.01). Numbers in parenthesis correspond to SD of three separate experiments.									

Table 3. Diameter of hyphae of different strains of white rot fungi grown on different concentrations of DEHP.

	DH (µm)								
	Culture media								
Strain	MS		MS+750 mg/l		MS+1200 mg/l		MS+1500 mg/l		
			DEHP		DEHP		DEHP		
	YZ	MZ	YZ	MZ	YZ	MZ	YZ	MZ	
P. ostreatus 37	2.12	2.00 ^g	2.29°	2.24 ^d	2.29°	2.59°	2.41 ^b	2.19 ^e	
	(0.064)	(0.265)	(0.158)	(0.180)	(0.053)	(0.217)	(0.275)	(0.223)	
L. edodes	3.08°	2.97 ^d	2.80 ^e	2.95	3.16 ^b	2.81°	2.84 ^e	3.31°	
	(0.111)	(0.275)	(0.286)	(0.120)	(0.267)	(0.605)	(0.298)	(0.112)	
P. ostreatus 26	2.48	2.86°	3.33°	3.11°	2.76 ^d	2.84 ^c	2.369	2.54 ^e	
	(0.154)	(0.081)	(0.329)	(0.184)	(0.148)	(0.140)	(0.070)	(0.159)	

Means with the same letter within a row are not significantly different. Data were evaluated using ANC Tukey test. (P<0.01). Numbers in parenthesis correspond to SD of three separate experiments.

Conclusions. In general, *L. edodes* presented the highest u_r , Bm, TCW and DH in 1500 mg/l of DEHP, which suggest that this organism has a less specific enzymatic system in relation to *P. ostreatus* that allows it to grow in high concentrations of this compound.

References.

- Sánchez C, Téllez M, Díaz G and Moore D. (2004). *Lett Appl Microbiol*. Vol. (38.) (6): 483-487.
- 2. Sánchez C. (2009). *Biotechnol advans*, vol (27.): 185-194.
- 3. Liang D, Zhang T, Herbert H y He J. (2008). *Appl microbiol biot.* Vol. (80): 183-198.
- 4. Mersiowsky I., Weller M. and Ejlertsson J. (2001). *Water Res*, vol. (35): 3063-3070.
- Téllez-Téllez M, Díaz-Godínez G and Sánchez C. (2003). Appl. Microbiol. Biotechnol. (63) (2):212-216.
- Díaz R, Sánchez C, Bibbins-Martínez M and Díaz-Godínez G. (2011). Afr J Microbiol Res. (5) (18):2720-2723.