

BIODEGRADATION OF AZO DYE UNDER ANAEROBIC CONDITIONS BY STRAINS ENTEROPATHOGENIC *E. coli*

Valencia Toxqui Guadalupe¹., Alonso Calderon Alejandro I. A³., Avelino Flores Fabiola²., Castañeda Roldan Elsa. I²., Chávez Bravo Edith². ¹Escuela de Biología de la Benemérita Universidad Autónoma de Puebla, ²Centro de Investigaciones en Ciencias Microbiológicas de ICUAP, ³Ingeniería Química de la BUAP Edif 103 J Ciudad Universitaria, Puebla 72590. tigger2709@hotmail.com

Key words: Biodegradation, Escherichia coli, Azo dye.

Introduction. Environmental pollution has been recognized asone of the major problems of the modern world. One of the important environmental pollution most problems is the color in water courses (1). The textile industry is one of the greatest generators of liquid effluent pollutants, due to the high quantities of water used in the dyeing processes (2). Azo dyes make up approximately 70% of all dyestuffs used worldwide by weight making them the largest group of synthetic colorants and the most common synthetic dyes released into the environment (3,4). In the natural environment, azo dye can be transformed or degraded by a variety of microorganisms, including aerobic and anaerobic bacteria.(5) The present study thus utilized bacterial decolorizing of an azo dve under anaerobic conditions used wild strain Escherichia coli wastewater isolated and pathogenic strains.

Methods. The dye degradation study in wild strains enteropathogenic E. coli obtained from Alseseca river, Pseudomona aeruginosa, E2348/69 and DH5g, All strains were cultivated at 37°C with Luria Bertani (LB) and inoculated into nutrient broth (1 g/l beef extract, 2 g/l yeast extract, and 5 g/l NaCl) medium. For degradation of azo dye were carried out in nutrient broth amended with 100, 200 and 300 ppm direct Black 22, inoculated with 10% of bacterial culture, incubated at 37°C under static conditions for 10 days. The degree of decolorization of the dye was determined spectrophotometrically $(\lambda = 480)$ after being centrifuged at 6000 rpm for 10 min. Color removal efficiencies were calculated: $CR(\%)=D_i-D_f/D_i*100$.

Results. In all the concentrations tested was carried out decolorization. The color removal was 54.1% higher in the 100 and 300 ppm concentrations, whereas at 200 ppm gave approximately 67.9% (Table 1).

Concerning the percentage of strains removal at 200ppm there is difference between wild

strains enteropathogenic *E. coli* with DH5 α and *Pseudomona aeruginosa*. In Figure 1 shows a decrease of the dye from the first day of incubation, to remain constant in the 6th with all strain tested.

Fig.1. Decolorization Direct Black 22 with wild strain enteropathogenic *E. coli* (WS), Pseudomona, DH5α E2348/69 (E) throughout 10 days of batch incubation period.

Table 1. Color removal efficiencies of strain					
enteropathogenic	E. coli (WS), Pseudomona, DH5α				
	E2348/69 (E				

Strain	Initial concentrati on (ppm)	Final Concentrat ion (ppm)	Initial absorbanc e.	Final absorbanc e.	Color removal efficiencie s (%)
WS(I)	200	80.51	1.725	0.8025	59.74
WS(i)	300	137.45	2.655	1.37\$	54.18
WS(u)	200	123.75	1.725	1.2335	38.15
WS(u)	300	221.52	2.655	2.208	26.16
Pseudom ona	200	101.43	1.725	1.011&	49.28
Pseudom ona	300	185.86	2.655	1.8525\$	38.04
DH5a	200	110.26	1.725	1.099*	44.86
DH5a	300	192.08	2.655	1.9145\$	35.97
E2348/69	200	64.11	1.568	0.639&*	67.94
E2348/69	300	253.43	3.386	2.526	15.52

Conclusions.

The wild strain enteropathogenic *Escherichia coli* was able color removal to 59.74% of initial concentration.

References.

1.Bayoumi A, Musa M, Bahobil S, Louboudy S, El-Sakawey A. (2010). *J. Appl. Environ. Biol. Sci*,1(1):1-25. 2. Banat I, Nigam P, Singh D, Marchant R. (1996). *Bioresour. Technol.* 58(3): 217-227.

3. Chang J, Chou C, Lin Ý, Ho J, Hu T. (2001). *Wat. Res.* 35(12): 2841–2850.

4. Dias A, Bezerra R, Lemos P, Pereira A. (2003). World J. Microbiol. Biotechnol. 19(9): 969-975.

5. Chung K, Stevens E.(1993).*Environ. Toxicol. Chem.* 12(11): 2121-2132.

6. lsik M, Sponza D. (2003). *Process Biochem* 38 (8): 1183–1192