

NOVEL MASS TRANSFER CONSIDERATIONS FOR OIL-DEGRADING CONSORTIUM PRODUCTION IN A THREE-PHASE AIRLIFT BIOREACTOR

Manuel Alejandro Lizardi-Jiménez¹, Alberto Ordaz Cortés¹, Rodolfo Reyna Velarde¹, Mariano Gutiérrez-Rojas². ¹Universidad Politécnica de Quintana Roo. Avenida Tulum, Manzana 1, Lote 40, Planta Alta, SM 2, Cancún, Quintana Roo. ²Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa. Av. San Rafael Atlixco No. 186 Col. Vicentina, C.P. 09340 México D.F. Tel: 01(998)8839828. e-mail: mlizardi@upqroo.edu.mx

Hydrocarbon mass transfer, Oil-degrading consortium, Airlift bioreactor.

Introduction. Scarce information is available about hydrocarbon transfer in three-phase airlift bioreactor (ALB) for environmental purposes (1).

The aim of this study was to evaluate simultaneously hydrocarbon transfer (HTR) rate and oxygen transfer rate (OTR) as a novel consideration to enhance the productivity of an oil-degrading bacterial consortium in a three-phase ALB.

Methods. A 10-L glass airlift bioreactor (ALB) was used. Oxygen transfer parameters were evaluated by dynamic, gas in/gas out method. Hydrocarbon (HXD) transfer parameters were evaluated by using an early reported novel technique (1) and oil degrading consortium (2) was evaluated by gravimetric as suspended solids (SS).

Results. During 14 days culture, (Fig 1) using constant superficial gas velocity (Ug) values, the ratio of HTR to OTR (HTR/OTR) never reached the stoichiometric ratio $(0.25 \pm 0.05 \text{ g})^{-1}$).

Fig.1 HTR/OTR, along culture time as a function of constant Ug (cm s⁻¹): (\diamond) 0.15, (\Box) 0.46, (Δ) 0.61, (\blacksquare) 1.54 and (\blacktriangle) 2.7.

However, the oil-degrading consortium productivity at the higher assayed constant Ug (2.7 cm s⁻¹) was as good as 1.02 ± 0.03 g SS (L d)⁻¹. Also the Hydrocarbon intake was major at higher Ug (Fig 2). However the

principal constraint was hydrocarbon transfer instead oxygen transfers.

Fig. 2 HXD biodegradation (a) and SS production (b) time profiles for different Ug (cm s-1) assayed: (\Diamond) 0.15, (\Box) 0.46, (Δ) 0.61, (\blacksquare) 1.54 and (\triangle) 2.7.

Conclusions. The HTR/OTR values show HXD transfer limitations for oil degrading consortium production in a three-phase ALB.

Acknowledgements. PEMEX – Refinación for partial support.

References.

- Lizardi M., Saucedo G., Thalasso F., Gutiérrez M. (2011). Int. J. Chem. React. Eng. Vol (9): 2 -10.
- Tzintzun O., Loera O., Ramírez H., Guitierrez M. (2012). Int. Biodeter. Biodegr. Vol (70). Pag 1-7.