

OIL-DEGRADING MICROBIAL CONSORTIUM PRODUCTION IN DIFFERENT BIOREACTOR SCALES USING THE VARIABLE UG STRATEGY

<u>Myrka Suárez-Escalante¹</u>, César Ignacio Hernández¹, Mariano Gutiérrez-Rojas², Manuel Alejandro Lizardi-Jiménez¹, ¹Universidad Politécnica de Quintana Roo. Avenida Tulum, Manzana 1, Lote 40, Planta Alta, SM 2, Cancún, Quintana Roo. ²Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México. Tel: 01(998)8839828. E-mail: mlizardi@upqroo.edu.mx

Variable Ug, hydrocarbons, scaling

Introduction. The ratio of transfer rates of C₁₆H₃₄ and O₂ (TRH/TRO) was evaluated as an engineering approach to improve the production of hydrocarbon-degrading consortia in an airlift bioreactor (ALB) (1). The objective of this work is to evaluate, considering this ratio, the production of oildegrading microbial consortium when performing a scaling down with a scale factor of 20:1 (0.5 to 10 L) using the variable Ug strategy proposed in a previous work (1).

Methods. The superficial gas velocity (Ug) was varied in each of the ALB (0.5 and 10 L) according to a previous work between 0.61 to 2.7 cm/s (1). Ug of 0.61 cm/s was used during the first three days of cultivation; from the fourth day until the end of the culture time, Ug was increased to 2.7 cm/s. Initially, the ratio of transfer rates of $C_{16}H_{34}$ and O_2 was close to 0.012 g $C_{16}H_{34}$ (g O2) ⁻¹ and decreased to 0.0015 g $C_{16}H_{34}$ (g O2) ⁻¹ on the third day. The increase in Ug (2.7 cm/s) allowed TTH / TTO increase to 0.0021 g $C_{16}H_{34}$ (g O2) ⁻¹. The $C_{16}H_{34}$ was exhausted by the tenth day, just as production of suspended solids (SS) peaked to 8.1 (g SS) L⁻¹. Figure 1 shows the profiles of $C_{16}H_{34}$ and SS using the variable Ug strategy.

Figure 1. $C_{16}H_{34}$ (\diamond) and SS (\blacklozenge) profiles using the strategy of variable Ug

Results. The performance in grams of the consortium per gram of hydrocarbon consumed is the same for the two scales using variable Ug strategy. In previous papers, working with a bubble column bioreactor, the major scale (10.5 L) showed lower yields. Other researchers (2) found that biomass production may decrease with the scaling of the bioreactors.

Data shown in Table 1 was obtained in assessing the productivity and performance in the ALB when performing a scaling of 20:1 with variable Ug strategy and the use of TRH/TRO ratio.

Table 1. Production of SS, yield and productivity for different scales (20:1) using the variable Ug strategy.

Ug	ALB capacity (L)	Production of SS	Yield	Productivity
		(g SS)/L	g SS/ (g C ₁₆ H ₃₄)	g SS/(Ld)
Variable 0.61 y 2.7 cm/s	0.5	7.9 ± 0.21	0.55 ± 0.01	1.02 ± 0.03
	10	7.8 ± 0.23	0.55 ± 0.13	1.01 ± 0.05

Conclusions. It was demonstrated that using the variable Ug strategy to control the ratio of transfer rates hydrocarbon and oxygen (TTH/TTO) as operating criteria for the production of an oil-degrading microbial consortium maintains performance even with a change of scales 20:1.

Acknowledgements. PEMEX – Refinación for partial support.

References.

1. Lizardi-Jiménez M.A., Saucedo-Castañeda G., Thalasso F., Gutiérrez-Rojas M. (2012). *Chem. Eng. J.* Vol(187): 160-165.

2. Nielsen J., Villadsen J., Liden G. (2003). Mass transfer. In: *Bioreactor Engineering Principles.* Kuwler Academic/Plenum Publishers, USA, 423-460.