

EFFECT OF SUBSTRATE TO BIOMASS RATIO (S₀/X₀) ON KINETIC AND STOICHIOMETRIC PARAMETERS OF *Pseudomonas putida* F1

Gabriel R. Hernández Martínez, Roció Ramírez Vargas, Ivonne Esquivel Ríos, Frédéric Thalasso. Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. I. P. N. 2508, San Pedro Zacatenco, C. P. 07360, México, D. F., Tel. (55) 57473800. gabrielrafaelhernandez@gmail.com

Key words: Respirometry, So/Xo ratio, kinetic parameter

Introduction. Respirometry is the measurement of the biological oxygen consumption rate under well-defined conditions (1). This technique is commonly used to determine the main kinetic and stoichiometric parameters of biological processes; namely, the substrate affinity constant (K_S), the maximum growth rate (μ_{max}) and the cell growth yield $(Y_{X/S})$, within others. According to the literature, there is a large variability in the estimation of these kinetic and stoichiometric parameters, attributed to three key factors (2): the culture history, the parameter identifiability and the between substrate ratio and biomass concentration (S_0/X_0). The effect of S_0/X_0 ratio on kinetic and stoichiometric parameters has only been partially studied and to the best of our knowledge, its effect on $K_S,\ \mu_{max}$ and $Y_{X\!/\!S}$ has never been systematically studied. The goal of this study was to assess respirometrically the effect of the S_0/X_0 ratio on the kinetic and stoichiometric parameters of a model culture of Pseudomonas putida F1.

Methods. The model strain chosen was Pseudomonas putida F1 cultured on glucose as sole carbon source. Cultures used during respirometry tests were prepared in a 1 L Erlenmeyer flasks with 600 mL of culture medium containing (g L^{-1}); C₆H₁₂O₆, 5; (NH₄)₂SO₄, 1.32; KH₂PO₄, 1.25; MgSO₄·7H₂O, 0.10; FeSO₄·7H₂O, 0.075; yeast extract, 1; trace elements, 1 mL L^{-1} . Cultures were incubated for 48 h at 30 °C and 200 rpm orbital shaking. Respirometry tests were done in a microbioreactor system (24-microwell plate, Presens, Applikon, Mexico). Each well included a pre-calibrated fluorometric dissolved oxygen sensor. The respirometric method chosen was pulse dynamic respirometry which consists in measuring on-line the dissolved oxygen profile after the injection of a substrate pulse of a known concentration. This method has been exhaustively described for standard respirometers (4). The experimental strategy consisted in injecting 7 different glucose pulse concentrations in microwells containing variable biomass concentrations in such manner S_0/X_0 ratio was kept constant. 5 different S_0/X_0 ratios were tested.

Results. Figure 1 shows an example of respirograms observed after the injection of pulses of increasing concentration $(8 - 128 \text{ mg of soluble Chemical Oxygen Demand (COD_s) L⁻¹). In all cases, OUR increased sharply immediately$

after pulse injection and then, progressively returned to zero. Table 1 shows the values obtained for K_S, μ_{max} y Y_{XS} parameters determined for each S₀/X₀ ratio. As shown, K_S increased linearly with S₀/X₀ ratio, while μ_{max} presented a "Monod type" in regards to S₀/X₀ ratio. Y_{XS} did not present significant changes with S₀/X₀ ratio increases.

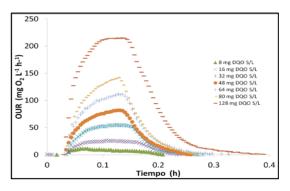


Fig.1 Example OUR profile for a S_0/X_0 ratio of 0.025, pulses glucose (mg COD L⁻¹).

Table 1. Ks, μ_{max} y Y _{XS} parameters determined from
respirometry for different S_0/X_0 ratio.

· • • • • · • · • · • · • • • • • • • •				
S_0/X_0 (mgCOD _s mgCOD _x ⁻¹)	K _S (mg COD L ⁻¹)	µ _{max} (h⁻¹)	Y _{X/S} (mgCOD _x mgCOD _s -¹)	
0.0075	0.77 ± 0.12	0.059 ± 0.0020	0.73 ± 0.08	
0.0150	1.20 ± 0.13	0.124 ± 0.0017	0.74 ± 0.05	
0.0250	3.22 ± 0.16	0.166 ± 0.0006	0.79 ± 0.03	
0.0500	8.32 ± 1.62	0.158 ± 0.0054	0.74 ±0.05	
0.1000	27.12 ± 0.87	0.183 ± 0.0035	0.94 ± 0.02	

Conclusions. S_0/X_0 ratio is an important factor to be considered in the determination of kinetic parameters of *Pseudomonas putida* F1

Acknowledgements. This work was supported by CONACYT (Project 133338). We also gratefully acknowledge CONACYT grants: # 261685, #219393 and #225319.

References. 1. Spanjers H., Takacs I., Brouwer H. (1999). Direct parameter extraction from respirograms for wastewater and biomass characterization. *Water Sci Technol* 39(4):137– 145.

2. Grady CPL, Smets BF, Barbeau DS. (1996). Variability in kinetic parameter estimates: A review of possible causes and a proposed terminology. *Water Res* 30(3): 742–744.

3. Chudoba P., Capdeville B. and Chudoba J. (1992). Explanation of biological S_0/X_0 ratio in batch cultivation. *Water*. *Res*, 26(3):743–751.

4. Ordaz, A., Oliveira, C.S., Aguilar, R., Carrión, M., Alves, M. y Thalasso, F. (2008). Kinetic and stoichiometric parameters estimation in a nitrifying bubble column through "in-situ" pulse respirometry. *Biotechn. Bioeng.* 100 (1): 94-102.