POLYHYDROXYALKANOATES PRODUCTION FROM VOLATILE ACIDS FROM AN ACIDOGENIC REACTOR

Zulma Lizzette Alamilla Ortiz , Idania Valdez Vazquez; Universidad de Guanajuato, Campus Irapuato-Salamanca, División
Ciencias de la Vida, Departamento de Ciencias Ambientales, Irapuato, Guanajuato, C.P. 36500, Apdo. Postal 311; Lizzee_90@hotmail.com.

Palabras clave: biopolymer, polyhydroxyalkanoates, volatile acids

Introduction. Polyhydroxyalkanoates (PHAs) are polyesters synthetized by microorganisms. PHAs are lineal polymers of (R)-3-hydroacids which the carbonyl group from a monomer forms an ester bond with the next monomer. PHAs are visualized as intracellular accumulations and can reach until 90% of the total dry cell weight ${ }^{[1]}$. The PHA-producing microorganismos used them as a reservoir of nutrients ${ }^{[2]}$. The physical characteristics of PHAs such as density, melting point and tensile strength are similar those of plastic derived from oil, however, PHAs are biodegradable completely ${ }^{[3]}$.
From a previous study, a H2-producing reactor fed with wheat straw generated effluents with a high concentration of organic matter (chemical oxygen demand $45,000 \mathrm{mg} / \mathrm{L}$). These effluents contain volatile acids as acetic and butyric acids which could be converted to PHAs using specific microorganisms.
The objective of this work was the PHA production from effluents containing volatile acids derived from an acidogenic bioreactor.

Methods. Kinects were performed using different percentages of acidogenic effluents ($15 \%, 30 \%$ y 60%) using the strain named CA-1. The assay was done in 250 ml Erlenmeyer flasks with 150 ml of sterile medium containing per liter: 4.4 g of $\mathrm{KH}_{2} \mathrm{PO}_{4}, 4.8 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, 1.0 g of $\mathrm{NH}_{4} \mathrm{Cl}, 0.5 \mathrm{~g}$ of $\mathrm{MgSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$). Acidogenic effluents were added to the mentioned percentages and 20% of an overnight inoculum. Flasks were incubated statically at $37^{\circ} \mathrm{C}$, samples were analyzed at $0,7,23,31,47,55,71$ and 79 h . Chemical oxygen demand (mg / L), dry weight, and extraction of $\mathrm{PHAs}^{[4]}$ were performed at each time.

Results. Figure 1 shows the kinetics of cell growth and PHA recovered at 15,30 and 60% of acidogenic effluents. In general terms, the dry weight increased with higher percentages of effluents from 20 to $40 \mathrm{mg} / \mathrm{ml}$. However, the PHAs extracted from cell were similar at each percentage. This could be because the cell would have enough nutrients and stress condition required for PHAs accumulation was not reached.

Conclusions. The acidogenic effluents from a $\mathrm{H}_{2}-$ producing bioreactor were useful to support cell growth of a PHA-producing microorganism. The dry weight can be increased at higher percentages of effluents, however the PHA concentration was not increased. The highest PHA yield was 54.8% obtained at 15% of acidogenic effluent.

Acknowledgements. Financial support from the Dirección de Apoyo a la Investigación y Posgrado (DAIP) of the Universidad de Guanajuato project N° 000105/11. The author Alamilla Ortiz wish to thank to the Consejo de Ciencia y Tecnología del Estado de Tabasco by scholarship.

References.

[1] De Almeida, A., et al., 2004, Química Viva. Vol. 3, número 003, pp. 122-133.
[2] Lenz, R. W. and R. H. Marchessault, 2005, Journal Biomacromolecules. Vol. 6, no. 1, pp. 1-8.
[3] Braunegg G, et al., 2004, Journal of Environmental Sciences. Vol. 43, pp.1779-1793.
[4] Comeau, Y., et al., 1988, Appl Environ Microbiol. Pp. 2325-2327.

