

USE OF ORGANIC FRACTION OF SOLID WASTE FOR HYDROGEN PRODUCTION IN A SEQUENCING BATCH REACTOR

Cristina Bujanos-Adame e Iván Moreno-Andrade

Laboratory for Research on Advanced Processes for Water Treatment, Institute of Engineering, Universidad Nacional Autónoma de México (UNAM). Juriquilla, Querétaro. 76230. e-mail: mbujanosa@ii.unam.mx

Key words: Hydrogen, HRT, Organic fraction of solid waste

Introduction. The importance to produce hydrogen (H₂) has increased due to its benefits compared with other fuels, it combustion generates only water as sub-product and has a high specific energy compared to other fuels (1). The organic fraction of urban solid waste (OFSW) represents more than 60% of total urban waste and includes 75% of easy to degrade matter (2). Using a fermentative process, the organic matter is transformed into H₂, CO₂ and organic acids and alcohols, this make feasible the biological production of H₂ (3). For this reason the objective was to evaluate the H₂ production form OFSW in a Sequencing Batch Reactor (SBR).

The objective of this study is to determine the optimal HRT for biological hydrogen production.

Methods. An SBR of 1L (exchange volume of 50%) was used to produce H_2 from the fermentation of OFSW using four different hydraulic retention times, HRT (72, 24, 12 and 6 h). An automatic temperature and mixing controller were used to maintain constant conditions (35±1°C and 80 rpm). The OFSW was collected in a cafeteria (avoiding inert material as plastic, PET or glass). The waste was homogenized by a blender to obtain particle sizes < 0.5 mm. 5 g of VS of OFSW was added as a substrate in each degradation cycle. The pH for all the experiments was adjusted to 7.0 and a citrate buffer 1M was used in order to maintain pH around 5.5 at the end of the reaction phase (3). The reactor was inoculated with hydrogen producers microorganisms selected by a thermal shock pre-treatment (103 - 105 °C during 1 h in an oven). H₂, CO₂, methane and volatile fatty acids (VFA) were determined by gas chromatography (SRI 8610 C and VARIAN 330 C).

Results. The OFSW used in this study showed the next characteristics: Moisture 74±2%, TS 239±19g/L, VS 212±22g/L, density 1115±26g/L, NH₃-N 387±62mg/L, COD_{total} 162±26g/L, pH of 5.2±0.4 and Alkalinity 25 mg CaCO₃/L. Figure 1 shows the kinetics of H₂ production adjusted to the Gompertz model for the different HRT. The biogas in all the cases was composed of only H_2 and CO_2 , with no methane detected for any case. It was observed that for all the cases, more than the 80% of the volumetric quantity of H_2 was produced during the first 8 hours of reaction.

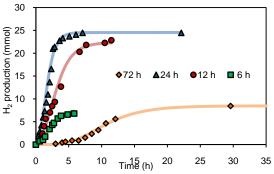


Fig.1. Biohydrogen production during the SBR operation at different HRT (72, 24, 12 and 6 h)

Table 1 showed the values resulted in each HRT. The maximum H_2 percentage in gas, maximum volumetric H_2 production (H_{max}) and the maximum H_2 production rate (R_{max}) were obtained at HRT of 24 h. The values for H_2 in biogas varied from 22 to 48%. Acetic acid was the main VFA obtained. Higher propionic acid production was observed in HRT of 6 h.

 Table 1. Experimental results for hydrogen productivity during four different reaction times.

daning four different redotion times.				
TRH (h)	R_{max} (mL H ₂ / h)	H _{max} (mL H ₂)	$mmolH_2$	% H ₂
72	78.1±56.8	369.7±270	16.5±12	23.6±11
24	328.7±144	757.8±391	33.8±17	48±6
12	186.4±150	460±253	20.5±11	28.1±13
6	242.5±311	282.5±246	12.6±11	22.3±14

Conclusions. The highest H_2 production was obtained applying an HRT of 24 with 328.7 mL H_2/h , followed by the HRT of 12 h.

Acknowledgements. Financial support by PAPIIT-DGAPA-UNAM (IB100612). Technical assistance of Jaime Perez & Gloria Moreno.

References.

- (1) Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P. 2008. *Energy policy*. 36, 4356-4362.
- (2) Guo, M., Trably, E., Latrille, E., Carrere, H., Steyer J-P. (2010). Int J Hydrogen Energy. 35, 10660-10673.
- (3) Fang, H.H.P. and Liu, H. (2002). Bioresour Technol. 82, 87-93.