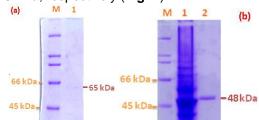


PURIFICATION AND CHARACTERIZATION OF INVA AND INVB INVERTASES FROM ZYMOMONAS MOBILIS. EXPRESSION IN PICHIA PASTORIS BY INDUCTION WITH METHANOL

<u>Ara Itzel Pérez de los Santos-Mondragón</u>; José Alejandro Santiago-Hernández and María Eugenia Hidalgo-Lara; Departamento de Biotecnología y Bioingeniería. Centro de Investigación y de Estudios Avanzados. Mexico City 07360; araitzel@yahoo.com.mx

Key words: invA, invB genes, AOX1

Introduction. *Zymomonas mobilis* produce two invertases: an intracellular (INVA) and an extracellular (INVB). These enzymes have attractive features for the food industry, *e.g.*, they have less susceptibility to inhibition by sucrose than the commercial invertase from Saccharomyces cerevisie.


The use of modified enzymes in industry bioprocess has increased in recent years. *Pichia pastoris* has been widely used for obtaining recombinant enzyme by means of different expression systems such as the methanol-regulated using the strong promoter AOX1. *P. pastoris* has been used for the expression of proteins for both basic research and industrial processes.

The aim of this study was to express the INVA and INVB from *Z. mobilis* in *P. pastoris* under the control of the promoter AOX1 and evaluate the biochemical properties of the recombinant enzymes

Methods. invA and invB genes from Z. mobilis were amplified from the bacterial genomic DNA and cloned into the pPICZαB expression vector. Constructions obtained (pPICZαB-invA and pPICZαB-INVB) were transferred to P. pastoris X-33 cells by electroporation. Transformants clones were selected for Zeocin resistance, functional bioassays (1-2), PCR amplification and protein expression in P. pastoris cells by small scale fermentation and induction with 1% methanol (3). Clones with the highest invertase activity in the culture supernatant were selected for the purification of the recombinant INVA (INVA-r) and INVB (INVBinvertases. Culture supernatant was concentrated by ultrafiltration (30 kDa membranes) or precipitation $((NH_4)_2SO_4)$. Recombinant enzymes were purified by ion exchange chromatography, and the purified enzymes were biochemically characterized.

Results. The *invA* and *invB* genes from *Z. mobilis* were expressed in *P. pastoris* and the recombinant enzymes were purified from the culture supernatant of clones with the highest extracellular invertase activity.

SDS-PAGE analysis of purified INVA-r and INVB-r showed a single band of 65 kDa and 48 kDa, respectively (**Fig. 1**).

Fig.1 SDS-PAGE analysis of purified INVA-r (a) and INVB-r (b) invertases. *P. pastoris* cells were induced with 1% methanol. (a) Line M: MW marker, Line 1: INVA-r. (b) Line M: MW marker, Line 1: Culture supernatant, Line 2: INVB-r.

Purified enzymes were biochemically characterized and a summary of results is shown in Table 1.

Table 1. Biochemical properties of INVA and INVB from *Z. mobilis.* pative (-n) and recombinant (-r) forms

2. mobilis, native (ii) and recombinant (ii) forms			
	Optimum	V_{max}	K_m
	T (°C)	(µmol/mg/min)	(mM)
INVA-n	30	n/d	42
(Z. mobilis)			
INVA-r	35	833	0,042
(P. pastoris)			
INVB-n	45	34	208
(Z. mobilis)			
INVB-r	40	5000	0,05
(P. pastoris)			

Conclusions. The recombinant INVA and INVB invertases from *Z. mobilis*, expressed in *P. pastoris*, showed both higher catalytical activity and substrate affinity with sucrose as the substrate than those reported for native INVA and INVB invertases from *Z. mobilis*.

Acknowledgements. Research was funded by CINVESTAV, AIPS-M received a scholarship from CONACYT, México.

References.

- Bochner B., Savageu M. (1977). App. Environ. Microbiol. 33 (2): pág. 434-444.
- Yanase H, Fukushi H, Ueda N, Maeda Y, Toyoda A y Tonomura K. (1998). Agric. Biol. Chem. 55 (5): pág. 1383-1390.
- Boschi S, Muniz A, Aráujo K, Marques A, Garcea R y Lee P. (2009). Arch Virol. 154: 1609- 1617: pág. 1609-1617.