

Tadayuki Imanaka; Dept. of Biotechnology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; email: imanaka@sk.ritsumei.ac.jp

Key words: hydrogen production, hyperthermophile, Thermococcus kodakarensis

Abstract

In recent years, hydrogen gas (H_2) is attracting widespread attention as a clean, non-polluting fuel. A large number of microbes living in anaerobic conditions are known to produce H_2 as a means of disposing of excess reducing equivalents (fermentation). However, in terms of productivity, research on fermentative H_2 production has been focused mainly on two bacterial genera. One is *Clostridium*, whose members are obligate anaerobic heterotrophs producing H_2 by fermenting carbohydrates. The other genus, *Enterobacter*, is recently gaining more attention because of its high H_2 productivity. Here, we demonstrate a high H_2 -producing potential of the hyperthermophilic archaeon, *Thermococcus kodakarensis* KOD1.

At a cultivation temperature of 85 °C using a complex medium supplemented with elemental sulfur (S⁰), a rapid growth of *T. kodakarensis* was observed evolving H₂S and CO₂ as metabolites. When S⁰ was omitted and pyruvate or starch was added in the medium, the cells produced H₂ at high levels instead of H₂S. As the level of H₂ appeared to correlate with the specific growth rate, analysis in continuous cultures was performed to develop a continuous H₂ production system. In a steady-state condition at a dilution rate of 1.5 h⁻¹, a continuous H₂ production rate of 50 mmol L⁻¹ h⁻¹ (1.1 L L⁻¹ h⁻¹) was observed in media supplemented with starch. Based on the experimental results along with data of the entire genome sequence, the metabolic pathway of the strain relating to starch and pyruvate degradation is discussed.

Fig. 1 Metabolic pathway for hydrogen production

Fig. 2 Biofilm of T. kodakarensis formed in continuous culture

Conclusions.

Hyperthermophilic archaeon, *Thermococcus kodakarensis* could produce hydrogen gas efficiently.

References.

1. T. Kanai, H. Imanaka, A. Nakajima, K. Uwamori, Y. Omori, T. Fukui, H. Atomi, and T. Imanaka,

J. Biotechnol., 116(3), 271-282, 2005

2. T. Kanai, R. Matsuoka, H. Beppu, A. Nakajima, Y. Okada, H. Atomi, and T. Imanaka

J. Bacteriol., 193(12), 3109-3116, 2011