ELIMINACION MICROBIOLOGICA DE PERCLORATO UTILIZANDO AZUFRE ELEMENTAL (S°) COMO DONADOR DE ELECTRONES.

Luis H. Alvarez a*; Jim Field b; Francisco J. Cervantes a.

Palabras clave: Perclorato, Reducción, Biofiltro.

Introducción. Las sales de perclorato (CIO_4^-) se utilizan en la fabricación de cohetes y fuegos artificiales gracias a su poder oxidante. En el Rio Colorado, que abastece agua para consumo humano y agricultura en California y Arizona; así como al Valle de Mexicali, la contaminación es de 9 ppb [1]. Su ingesta produce hipotiroidismo. Las tecnologías de tratamiento actuales incluyen intercambio iónico (II), carbón activado granular (CAG), hierro cero valente (HCV) y biorremediación. Esta última requiere sustratos como acetato y metanol con la generación de subproductos indeseados [2]. El objetivo fue desarrollar un biofiltro de bajo mantenimiento empacado con S° como donador de electrones, sin la adición de sustratos, que reduzca el CIO_4^- , de acuerdo con la siguiente reacción: $CIO_4^- \rightarrow CIO_3^- \rightarrow CIO_2^- \rightarrow CI^- + O_2$.

Metodología. Se utilizó una columna (47 x 5 cm) de vidrio con 662 g de pastillas de S° con diámetro de 5-7 mm. El inóculo fue de 5% (v/v), de bacterias anaerobias de la planta Tucson Ina Road. El reactor se operó por 218 días con 4 fases (Cuadro~1). Se midió CIO_4^- , NO_3^- por cromatografía de iones.

Cuadro 1. Fases del experimento.

Fase	Nutrientes	ClO₄⁻ (ppm)	NO ₃ ⁻ (ppm)	TRH (h)
1	si	300	0	6
2	si	150	10	6
3	no	150	10	12
4	no	2	10	2

Resultados y discusión. Muchos sitios contaminados con ClO_4^- incluyen NO_3^- [3], por lo cual es importante abordar la problemática paralelamente. La eficiencia de remoción de ClO_4^- alcanzó 35.4%, 88.2% y 99.5% para las fases II, III y IV, respectivamente. El uso de S° como donador de electrones para reducir ClO_4^- genera SO_4^{2-} y Cl^- , que son productos de bajo impacto ambiental a las concentraciones generadas, la siguiente reacción lo ejemplifica: $3ClO_4^- + 4S^\circ + 4H_2O \rightarrow 4SO_4^{2-} + 8H^+ + 3Cl^-$.

La Fig. 1 muestra el comportamiento del biofiltro durante las fases II y III. La Fig. 2 representa la fase IV en donde se incluye al NO_3^- . Durante la fase III (día 26 al 108), se alcanzó una eficiencia de remoción del 88.2% de CIO_4^- , alcanzando el 100% a partir del día 56. La fase IV (día 109 al 218) tuvo una eficiencia de remoción de 99.5% de CIO_4^- y 99.4% de NO_3^- . El uso del biofiltro reduce costos, mantenimiento y la generación de productos indeseados, en comparación con CAG y HCV que presentan baja

eficiencia y costos elevados. Con bioreactores se generan productos indeseados [3,4].

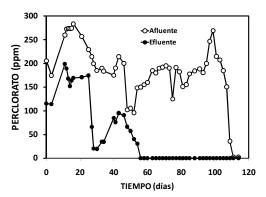


Fig. 1. Reducción de ClO₄⁻en fases II y III.

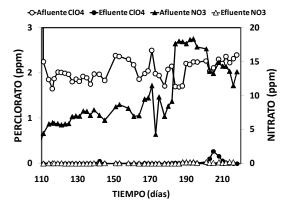


Fig. 1. Reducción de CIO₄⁻y NO₃⁻en la fase IV.

Conclusiones. Las bacterias reductoras de CIO_4^- pueden utilizar S° como donador de electrones con eficiencias de remoción de 99% y un TRH de 2 h. La presencia de NO_3^- no afecta la reducción del CIO_4^- ; el NO_3^- fue reducido en un 99.4% de manera simultánea.

Agradecimiento. CONACyT y US-Mexico Binational Center

Bibliografía.

- 1. Holdren, G, Kelly, K y Weghorst, P. (2008). *Hydrobiología*. 604:173–179.
- 2. Environmental Protection Agency. (2005). EPA 542-R-05-015.
- 3. Logan B, La Point D. (2002). Water Res. 36:3647-53.
- Urbansky, E. (2002). Environ Sci & Pollut Res. 9 (3) 187 192.

^a División de Ciencias Ambientales. Instituto Potosino de Investigación Científica y Tecnológica. Camino a la Presa 2055 Col. Lomas 4 sección CP 78216. San Luis Potosí, SLP, México.

^b Department of Chemical and Environmental Engineering. The University of Arizona. * luis.alvarez@ipicyt.edu.mx