## METANIZACIÓN Y MINERALIZACIÓN DEL 2-CLOROFENOL (2CP) EN UN REACTOR DE LOTE SECUENCIADO (SBR)

Lizeth M. Beristain, Flor M. Cuervo-López, Florina Ramírez, Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, C.P 09340 México, D.F, Tel. (55) 58044723, lizeth beristain@terra.com.mx

Palabras clave: Reactor de lote secuenciado (SBR), 2-clorofenol (2-CP), metanogénesis

Introducción. Los clorofenoles son compuestos orgánicos tóxicos, que están ampliamente distribuidos en el medio ambiente. Estos compuestos pueden causar daño celular, mutagénesis y cáncer (1). Algunos compuestos aromaticos han sido eliminados del agua residual bajo condiciones metanogénicas, sin embargo, en la mayoría de los casos las velocidades de consumo son bajas y algunos intermediarios pueden acumularse (2,3). Debido a lo anterior es necesario encontrar un sistema que favorezca su mineralización. Se ha encontrado que la capacidad de degradación de los microorganismos se puede incrementar aclimatación del lodo (2) y se ha evidenciado que se puede llevar adecuadamente en reactores SBR (4).

En este trabajo se evaluó la metanización y mineralización del 2CP en un cultivo metanogénico usando un reactor SBR en presencia y ausencia de fenol como donador de electrones.

Metodología. Se inocularon dos reactores SBR con 3 g SSV/L de lodo metanogénico con un contacto previo al 2-CP de 50 días. En el reactor A se adicionó 50 mg 2-CP/L y en el reactor B 50 mg 2CP/L y 35 mg fenol/L, utilizando una atmósfera de nitrógeno en ambos reactores y se incubaron a 35°C. Los reactores fueron operados con los siguientes tiempos en cada etapa: llenado (15 min), reacción (variable, dependiendo del tiempo necesario para conseguir una eficiencia de remoción ≥ 90%), sedimentación (2 h) y drenado (15 min). En ambos reactores se determinó el consumo de 2-CP, producción de biogás e intermediarios y el índice volumétrico del lodo (IVL).

**Resultados y discusión**. La eficiencia de consumo de 2-CP (91 $\pm$ 5.6 %) y rendimiento de producción de biogás (0.89 $\pm$ 0.06 mg C-Biogás/mg C-consumido) se mantuvieron constantes en ambos reactores a través de los ciclos de operación. El índice volumétrico del lodo (IVL) en ambos reactores aumentó de 35.00 $\pm$ 1.8 a 97.67 $\pm$ 0.8 mL/g, sin embargo el lodo mantuvo una buena capacidad de sedimentación. La velocidad específica de consumo de 2CP (q<sub>2CP</sub>) incrementó un 86 $\pm$ 3% después de 7 ciclos de operación, confirmando que mediante un reactor SBR se puede aumentar la velocidad de consumo del 2-CF (Fig. 1).

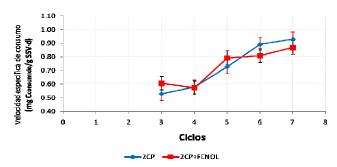



Fig. 1. Velocidades especificas de consumo de 2-CP, durante los ciclos de operación.

La adición de fenol no influyó significativamente sobre las velocidades de consumo del 2CP.

**Conclusiones**. El uso de un reactor de lote secuenciado logró incrementar la velocidad específica de consumo de 2-CP en un 86±3% en ambos reactores. La adición de fenol como donador de electrones no mejoró la velocidad de consumo del compuesto aromático.

## Agradecimiento.

Agradecimiento al proyecto SEP-CONACYT CB-2005-C01-497 48 Z

## Bibliografía.

- 1. Annachhatre, A.P., Gheewala, S.H., (1996). Biodegradation of chlorinated phenolic compounds. Biotechnol. Adv. 14: 35–56.
- 2. Fen-Xia Ye, Dong-sheng Shen (2004) Acclimatation of anaerobic sluge degrading chlorophenols and the degradation kinetics during acclimatation period. Chemosphere 54: 1573-1580.
- 3. Becker G. J, Sthal D. A. and Rittmann B. E. (1999). Reductive Dehalogenation and concersion or 2-Chlorophenol to 3-Chlorobenzoate in a Methanogenic Sediment Community: Implication for Predicting the Environmental fate of Chlorinated Pollutants. Applied and Environ. Microbiol. 65:5169-5172.
- 4. Buitron, G., Soto, G. y Moreno, J. (2001) Strategies to enhanance the biodegration of toxic compounds using discontinuous processes. Wat. Sci. Technol. 14:227-236.