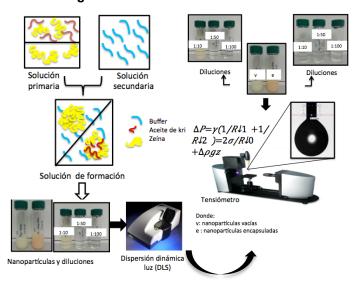
Resumen de Trabajos Libres

ESTUDIO DE ACTIVIDAD INTERFACIAL DE NANOPARTÍCULAS PROTEICAS.

Diana Laura Jiménez-Martínez, José Campos-Terán, Izlia Jazheel Arroyo-Maya*. iarroyo@correo.cua.uam.mx


Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Col., Santa Fe Cuajimlapa, Deleg. Cuajimalpa de Morelos, 05348, CDMX, Mexico.

Palabras clave: Nanotecnología, propiedades interfaciales, biopolímeros.

Introducción. El tamaño nanométrico de las nanopartículas biopoliméricas les proporciona una gran área interfacial de contacto con el medio que las rodea. Lo anterior se traduce en que la ciencia interfacial juega un papel importante en la formación, estabilidad y otros atributos importantes de las partículas funcionalizadas como nanovehículos para compuestos de interés biológico.

El estudio de la relación entre las propiedades interfaciales y fundamentales y la formación de nanopartículas formadas a partir de la proteína zeína para su aplicación en el área de alimentos es el objetivo principal de este trabajo.

Metodología.

Resultados. La distribución del tamaño de partícula y el potencial zeta se puede observar en la **Tabla 1**. Los valores indican que funcionalizar a las nanopartículas de zeína con un compuesto activo de interés biológico (aceite de krill) permite obtener partículas de menor tamaño. En cuanto al valor de carga superficial (potencial zeta) se puede observar que se mantiene en un intervalos que comprende de -38 a -47 mV.

Tabla 1. Distribución de tamaño y potencial zeta de nanopartículas de zeína cargadas con aceite de krill.

Nanopartículas vacías	1:10		1:50		1:100	
Porcentaje /		220		220		342
Rango (nm)	75.1% 75.4% 75.4%	75.4%	531	66.8%	825	
Mínimo (nm)	142		142		122	
Promedio (nm)	354 ± 11.7		325 ± 3.6		481 ± 22	
Máximo (nm)	955		825		1281	
B	-44.4 ± 1.37		-43.3 ±2.11		-46.3 ± 5.19	
Potencial z (mV)						± 5.19
Tabla 2. Caracter Nanopartículas encapsuladas	rización de		rtículas e			
Tabla 2. Caracter	rización de	e nanopa	rtículas e	ncapsula	das	
Tabla 2. Caracter Nanopartículas encapsuladas	rización de 1:	e nanopa 10	rtículas e 1:	ncapsula 50	das 1:1	.00
Tabla 2. Caracter Nanopartículas encapsuladas Porcentaje /	rización de 1: 70.6%	e nanopa 10 122	rtículas e 1: 66.8%	ncapsula 50	das 1:1	.00 122 255
Tabla 2. Caracter Nanopartículas encapsuladas Porcentaje / Rango (nm)	70.6%	e nanopa 10 122 255	rtículas e 1: 66.8%	ncapsula 50 122 255	das 1:1 63.2%	.00 122 255 8
Tabla 2. Caracter Nanopartículas encapsuladas Porcentaje / Rango (nm) Mínimo (nm)	70.6%	10 122 255 8 : 1.87	rtículas e 1: 66.8% 6	122 255	das 1:1 63.2%	.00 122 255 8 ± 2.4

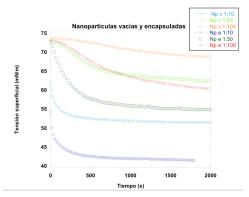


Figura 1. Actividad interfacial de diferentes concentraciones de suspensiones de nanopartículas vacías y cargadas con aceite de krill.

En la **Figura 1** se observa que la muestra con nanopartículas cargadas con aceite de krill (dilución 1:10) presentaron la mayor capacidad para modificar el valor de tensión superficial.

Conclusiones. Las nanopartículas presentaron actividad interfacial. Se observó que tanto la concentración de partículas y presencia de encapsulado tienen efecto en la tensión interfacial.

Bibliografía.

Arroyo-Maya, I. & McClements, J. (2014) Food Research International 69:1-8.

