

ELABORACIÓN DE BIOFORMULADOS CON POSIBLE POTENCIAL PARA EL CONTROL DE LARVAS DE Aedes aegypti (DIPTERA: CULICIDAE)

Lucero A. García- Nuñez¹, Fátima Lizeth Gandarilla-Pacheco¹, María Elizabeth Alemán-Huerta¹, Erick de Jesús de Luna-Santillana², Isela Quintero-Zapata¹

¹ Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología. Ave. Pedro de Alba s/n cruz con Ave. Manuel L. Barragán, Ciudad Universitaria, C.P. 66450, San Nicolás de los Garza, Nuevo León, México. ² Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Medicina de Conservación. Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, C.P. 88710, Reynosa, Tamaulipas, México. Email: isela.quinterozp@uanl.edu.mx

Palabras clave: Aedes aegypti, preferencia alimenticia, biopelículas.

Introducción. Aedes aegypti es el mosquito transmisor de enfermedades como el dengue, chikungunya, zika y fiebre amarilla, existen diferentes tipos de control para erradicarlo, tales como los físicos, químicos y biológicos. Dentro del control químico se encuentra el uso de insecticidas, que generan daños en el medio ambiente gracias a sus residuos y se ha demostrado que el mosquito obtiene resistencia a estos, es por eso que dentro del control biológico se ideó el uso de matrices biodegradables y bioamigables capaces de transportar bioactivos utilizando fibras y polímeros naturales. En este trabajo se desarrolló una matriz a base de polímeros naturales capaz de transportar un bioactivo y se evaluó la preferencia de fibras naturales en larvas de Aedes aegypti.

Metodología. Para la elaboración de películas se siguió el método de Zamudio (2013), se realizaron diferentes tratamientos en donde se utilizaron diferentes polímeros y distintas fibras como adyuvantes y un atrayente, se añadió glicerol en el mismo volumen para cada polímero, se agitó, se vertieron en cajas y se llevaron a secado en horno, una vez seco se midió el grosor, se cortó la película en laminillas circulares y se pesaron (2). Con un bioensayo se observó la preferencia alimenticia de las larvas en segundo estadio de *Aedes aegypti* (3).

Resultados. Se elaboraron nueve tratamientos diferentes los cuales tuvieron tres distintos polímeros y cuatro fibras naturales, y un atrayente. Se evaluó la preferencia alimenticia de las larvas de *Aedes aegypti*, así como también se observó la solubilidad de las películas y flotabilidad. El tiempo considerado para los bioensayos fue de 10 días.

Tabla 1. Preferencia alimenticia, solubilidad y ciclo completo de *Ae. aegypti* con los nueve tratamientos.

acgypii con loc nacyo tratamentos.				
Tratamiento/ código	Preferencia alimenticia	Solubilidad	Flotabilidad	
7	++	++	-	
10	++	+++	-	
11	+++	+++	++	

12	+	+	+
13	+	++	++
18	++++	+++	-
19	++	++	-
21	++	+++	+
22	++	+++	-

Parámetros considerados: Preferencia alimenticia, mucho acercamiento (++++), acercamiento moderado (+++), acercamiento regular (++), poco acercamiento (+), sin acercamiento (-). Solubilidad, rápida (+++), regular (++), lenta (+), nada (-). Flotabilidad, laminillas flotaron los 10 días constantes (+++), regular (++), poca (+), no flotaron ningún día (-). Casi todos los tratamientos mostraron una solubilidad alta, a excepción del 7, 12 (esta laminilla conservó por más tiempo su morfología), 13 y 19, los cuales se puede decir que tuvieron una preferencia alimenticia media. El tratamiento con mayor preferencia alimenticia fue el 18, el cuál tenía una fibra diferente a la de los demás tratamientos, también mostró una ganancia de peso mayor que las demás larvas.

Conclusiones. Se prepararon distintas formulaciones probando polímeros y fibras naturales para crear una matriz capaz de transportar un bioactivo aplicable al control biológico de *Aedes aegypti*. Se deduce que existe una relación entre preferencia alimenticia y la solubilidad, como se muestra en los tratamientos once y dieciocho (mayor preferencia alimenticia y mayor solubilidad) y los tratamientos doce y trece (menos preferencia alimenticia, menos solubilidad).

Bibliografía.

- 1. Zamudio-Flores PB, Bello-Pérez LA (2013) Elaboración y caracterización de películas de glicoproteínas obtenidas mediante la reacción de Maillard utilizando almidón acetilado y aislado proteico de suero lácteo. *Rev Mex Ing Quim.* 12 (3): 401-413
- 2. Santiago-Santiago M (2015) Elaboración y caracterización de películas biodegradables obtenidas con almidón nanoestrucurado. Tesis (MC) Universidad Veracruzana.
- 3. OMS (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC/81.807.

